镁及镁合金化学分析方法 第 23 部分:元素含量的测定 波长色散 X 射线荧光光谱法 编 制 说 明

(送审稿)

中铝郑州有色金属研究院有限公司 2023-12

编制说明

一 工作简况

(一) 任务来源

根据 2020 年 1 月全国有色金属标准化技术委员会征集标准项目计划的通知要求,提交 GB/T 13748.23-20XX《镁及镁合金化学分析方法 第 23 部分:元素含量的测定 波长色散 X 射线荧光光谱法》的标准制定计划。2022年8月国家标准化管理委员会下发国标委发[2022]22 号文件,下达该标准的制定计划(计划号 20220732-T-610)。

(二) 主要参加单位和工作成员及其所作的工作

2.1 主要参加单位情况

本标准由中铝郑州有色金属研究院有限公司牵头提交标准制定计划,标准制定计划前主 动给各单位发函调研,就镁及镁合金 XRF 分析测定的方法类别,以及 X 射线荧光光谱法 (XRF 法)测定操作的样品选取、制备、分析、校准等细节问题进行问卷调查,充分了解行业内镁及镁合金 XRF 分析测定的操作详情。参与调研单位包括中国空空导弹研究院、中船重工 725 研究所、国家镁及镁合金质量监督检验中心、西南铝业、山西银光镁业等十多家生产和分析检测单位,这些单位积极填写调研函,为主编单位标准编写提供真实有效的信息。

2.2 主要工作成员所负责的工作情况

本标准主要起草人及工作职责见下表。

起草人	单位名称	工作职责
白万里、谢远萍、张元 克、薛宁	中铝郑州有色金属研究院有限公司	主编人员,负责标准的工作指导、编写、试验方案的确 定及组织协调,同时负责试验方案的实施,试验数据的 汇总与整理。
谷柳	有色金属技术经济研究院有限责 任公司	主编人员,组织协调主编单位和参编单位工作,对标准 提出指导性意见和建议的工作指导、。
陈瑜、刘功达	西南铝业(集团)有限责任公司	提供样品单位,提供了全套镁合金标准样品,对标准文 本提出合理的修改意见,
周文勇、严春燕	中国空空导弹研究院	一验单位,对所有复验条件进行验证,对标准文本提出 合理的修改意见。
孙志阳、吴洋	国家镁及镁合金质量监督检验中 心	一验单位,对所有复验条件进行验证,对标准文本提出 合理的修改意见。
于磊	国标(北京)检验认证有限公司	二验单位,对部分复验条件进行验证,对标准文本提出 合理的修改意见。
罗舜	昆明冶金研究院有限公司	二验单位,对部分复验条件进行验证,对标准文本提出 合理的修改意见。
江丽	上海交通大学	二验单位,对部分复验条件进行验证,对标准文本提出

		合理的修改意见。
肖阳	郑州轻研合金科技有限公司	提供试验样品单位,负责提供镁合金内控标准样品和试
月阳		验样品,对标准文本提出合理的修改意见。
张红芳	1. 五胡 火 化 皮埃 1. 肌 小 去阳 八 ヨ	提供试验样品单位,负责提供镁合金试验样品,对标准
	山西银光华盛镁业股份有限公司 	文本提出合理的修改意见。
单鑫	包头铝业有限公司	标准第三方验证单位,负责对方法的再次验证。

(三) 主要工作过程

1、预研阶段: GB/T 13748 是镁及镁合金化学元素分析的系列标准,除光电光谱法外, 其余湿法分析,程序相对繁琐,而单一的光电光谱方法,不能全面满足稀土新材料、军工科 研等多方面快速分析的需要:军工单位使用合金类型多样,如仅用光电光谱法测定镁及镁合 金,就存在各类金属交叉污染风险,洛阳空空导弹研究院等军工单位测定镁合金直接铣床切 削,XRF 快速测定。

X 射线荧光光谱法作为一种成熟的分析方法,测定镁基体物质干扰小、背景低、灵敏度高,并且有完善的、明确的数学校准模型做理论指导,该方法分析元素范围广泛,测定覆盖范围宽。XRF 分析借助镁及镁合金光谱标准样品,制作工作曲线,能得到大量准确可靠的数据,同时 XRF 测定的测定面积为直径 27mm-32mm 的圆形面,更具有测定代表性。该标准我们前期做了大量的调研和测定工作,在中国空空导弹研究院、中船重工 725 研究所、国家镁及镁合金质量监督检验中心、西南铝业、山西银光镁业等十多家生产和分析检测单位做过调研,调研中发现: 11 家单位中 4 家使用镁及镁合金 XRF 分析,4 家全部为科研单位,占比 37%。

主编单位中铝郑州研究院,通过优化样品制样方式、选择合适的 XRF 分析条件以及适当的校准方式,选择不同厂家的帕纳科 XRF 设备和 XRF1800 设备,进行镁合金的 XRF 测定,测定结果满足分析需要;同时在国家镁及镁合金质量监督检验中心、中国空空导弹研究院做 XRF 测定镁合金的对标测定工作,证明了方法的可行性。

最终提出 GB/T 13748.23-20XX《镁及镁合金化学分析方法 第 23 部分:元素含量的测定 波长色散 X 射线荧光光谱法》的标准制定计划。

2、立项阶段:

2020年1月主编单位提交 GB/T 13748.23-20XX《镁及镁合金化学分析方法 第 23 部分:元素含量的测定 波长色散 X 射线荧光光谱法》的标准制定计划。2022年8月国家标准化管理委员会下发国标委发[2022]22号文件,下达该标准的制定计划(计划号 20220732-T-610)。

3、起草阶段:

3.1 召开任务落实会议

2022年9月在安徽省池州市召开有色标委会任务落实会议,会议要求由中铝郑州有色金属研究院有限公司牵头,负责承担 GB/T 13748.23-20XX《镁及镁合金化学分析方法 第23部分:元素含量的测定 波长色散 X 射线荧光光谱法》(计划号 20220732-T-610)的标准制定工作;会议明确由西南铝业(集团)有限责任公司、空空导弹研究院、国家镁及镁合金产品质量监督检验中心、昆明冶金研究院有限公司、上海交通大学、国标(北京)检验认证有限公司、郑州轻研合金科技有限公司、山西银光华盛镁业股份有限公司等8家单位参与标准制定工作。池州会议后主编单位将标准草案提交给各参编单位,各单位针对标准内容提出修改意见,主编单位进行汇总整理,形成了征求意见稿I。

3.2 标准起草和复验

池州会议后主编单位积极准备试验材料,由主办单位和西南铝业(集团)有限责任公司 提供全系列的镁及镁合金系列标准样品,由郑州轻研合金科技有限公司提供系列钆钇合金内 控样品;由郑州轻研合金科技有限公司、山西银光华盛镁业股份有限公司等单位提供实际生 产样品;主编单位进行标准试验测试工作,根据镁及镁合金牌号分类制作做工曲线并进行准 确度和实际样品测定工作;2023年1月主编单位将全套的镁及镁合金系列标准样品、内控 样品和复验实际样品流转邮寄到各单位进行复验工作,各复验单位认真负责镁及镁合金的测 定的工作,积极反馈并对复验中出现的问题进行积极反馈沟通。

3.3 召开预审会议

2023年2月开始试验复验参编单位开始陆续反馈数据和试验报告,主编单位开始将各个单位的数据汇总处理,计算并提出实验室内的重复性限和实验室间的再现性数据,编辑文本形成了预审稿和预审稿编制说明;2023年6月,全国有色金属标准工作会议召开,会议对标准文本进行细致的预审工作。

3.4、征求意见阶段

预审会议后标准主编单位一方面进行文本修改整理,一方面进行 XRF 校准比对试验,在将各参编单位的校准数据汇总整理后编入标准文本附录中,主编单位将整理后标准文本再次反馈给各个参编单位,就文本内容、格式、校准、精密度等展开细致检查和纠错,同时对标准进行了广泛征求意见,除编制组单位外,共发送《征求意见稿》单位 13 家,其中生产使用单位 7 家,占比 54%,科研单位 6 家,占比 46%,回函单位 13 个,回函并有建议的单位 11 个。根据各单位专家老师的回函意见,经编制组讨论研究,提出具体的意见和采纳情况,编写形成了《标准征求意见稿意见汇总处理表》,经过文本编辑于 2023 年 12 月形成了

《镁及镁合金化学分析方法 第 23 部分:元素含量的测定 波长色散 X 射线荧光光谱法》标准送审稿。

- 3.5、审查阶段
- 3.6、报批阶段

二 标准编制原则

- 1)、本标准编写格式上严格按照 GB/T 1.1-2020《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》和 GB/T 2000.4-2015《标准编写规则 第 4 部分:试验方法标准》要求编写。
- 2)、以人为本充分考虑安全、准确等相关要求,在样品尺寸选取、试样制备、曲线制作、校准等方面,进行充分的考虑并进行样品的试验验证。

三 标准主要内容的确定依据及主要试验和验证情况分析

3.1 标准题目的确定

本次制定是在 GB/T 13748 中加入第 23 部分,作为波长色散 X 射线荧光光谱法(XRF 法)测定镁及镁合金中元素含量的标准方法,标准申请号为 GB/T 13748.23-20XX,标准题目为《镁及镁合金化学分析方法 第 23 部分:元素含量的测定 波长色散 X 射线荧光光谱法》。

3.2 标准的适用范围

本标准依据目前市售镁及镁合金标准样品,根据标样中的元素类别,确定了镁及镁合金中铝、锌、锰、硅、铁、铜、钛、锶、镍、铅、锆、钆、钇、铈、钕的测定方法。

本文件适用于棒状或块状镁及镁合金中铝、锌、锰、硅、铁、铜、钛、锶、镍、铅、锆、钼、钇、铈、钕的测定。

XRF 方法具有测定元素类别多、测定范围广的特性,但受制于元素原子序数大小以及自身荧光产额的限制不同元素的测定下限会有差异,同时受制于不同系列标样的最高含量点,测定范围的上线也有所不同。目前已有国内的镁及镁合金标样和所获得内控样品中各元素的最低和最高含量数值见表 1。

元素	最低含量/%	最高含量/%	元素	最低含量/%	最高含量/%
铝	0.0052	11.52	镍	0.0004	0.055
锌	0.0040	8.35	铅	0.0005	0.037
锰	0.0054	1.19	锆	0.081	1.03
硅	0.0024	1.83	钆	5.49	10.68
铁	0.0015	0.039	钇	0.134	4.54

表 1 标样中最低和最高的含量

铜	0.0007	4.61	铈	0.149	4.16
钛	0.0001	0.0025	钕	0.429	3.55
锶	0.0015	0.028			

本标准中测定对象为镁及镁合金,涉及测定下限的通常是纯镁牌号,涉及到上限的通常是高含量牌号的非镁主量元素;本标准中使用目前已有的块状光谱标样制作工作曲线,利用有证标样或有化学值样品验证,最终确定 XRF 测定镁及镁合金方法的测定下限和测定上限。测定范围见表 2。

测量范围/% 测量范围/% 元素 元素 铝 镍 $0.0050 \sim 11.52$ $0.0010 \sim 0.055$ $0.0010 \sim 0.040$ 锌 $0.0010 \sim 8.35$ 铅 锰 锆 $0.0020 \sim 1.20$ $0.10 \sim 1.00$ 硅 钆 $0.0050 \sim 1.80$ 5.00~11.00 铁 钇 $0.0020 \sim 0.039$ 0.10~4.50 铜 $0.0010 \sim 4.50$ 铈 $0.10 \sim 4.00$ 钛 0.0020-0.0025 钕 0.40-3.50 锶 0.0010-0.030

表 2 实际可测定范围

在表 2 基础上, XRF 分析测定基础上对表 2 内容进行合理的末端扩展, 得到表 3。

元素	测量范围/%	元素	测量范围/%
铝	0.0050~12.00	镍	0.0020~0.060
锌	0.0020~8.50	铅	0.0020~0.050
锰	0.0020~2.00	锆	0.10~1.00
硅	0.0050~2.00	钆	0.10~11.00
铁	0.0020~0.050	钇	0.10~4.50
铜	0.0020~5.00	铈	0.10~4.50
钛	0.0020-0.010	钕	0.10-3.50
锶	0.0020-0.030		

表 3 扩展后可测定范围

3.2.1 测定下限的确定

利用纯镁标样 E4131-E4137 和 G311-G316,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,利用标准样品和有化学值样品测定其中元素最低含量,测定结果见表 4。

表 4 纯镁测定数据

单位:%

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
E4131 标准值	0.011	0.0028	0.0012	0.011	0.017	0.011	0.00035	0.0052	0.00026
E4131 XRF 测定值	0.0111	0.0029	0.0011	0.0115	0.0169	0.0103	0.0001	0.0055	0.0004
E4135 标准值	0.0063	0.0022	0.00063	0.0059	0.006	0.0079	0.00033	0.002	0.0004
E4135 XRF 测定值	0.0055	0.0024	0.0004	0.0052	0.0059	0.0073	0.0003	0.002	0.0002
Pure-1# 化学值	0.0108	0.0033	0.0007	0.0191	0.0141	0.0063	0.0002	0.0011	0.0004
Pure-1# XRF 测定值	0.0121	0.0038	0.0008	0.0192	0.0141	0.0062	0.0002	0.0007	0.0003

058# 化学值	0.0048	0.0032	0.0004	0.0078	0.0098	0.0057	0.0003	0.0006	0.0003
058# XRF 测定值	0.0066	0.0039	0.0004	0.0074	0.0107	0.0064	0.0001	0.0006	0.0004

根据表 4 数据,钛、铜、镍、铅在 0.0010%含量或以下含量水平,XRF 测定值和标准值或化学值测定一致或吻合,铜、镍、铅等元素的测定下限在;尽管锌元素在表 4 中最低含量为 0.0057%,数据未能验证 0.0010%含量,但锌元素的荧光产额(见表 5)为 0.435,比镍、铜元素的还要大, 而镍、铜元素已经验证在 0.0010%含量的测定下限,因此锌元素的测定下限也定为 0.0010%; 表 4 中铁元素测定最低值为 0.0022%级别, XRF 测定值和标准值吻合,因此铁元素的测定下限定为 0.0020%,锰元素的荧光产额(见表 5)为 0.285,其和铁元素在同一水平,因此锰元素的测定下限定为 0.0020%;尽管表 4 中钛元素 XRF 测定结果在 0.0010%级别和标准值吻合,但由于钛的荧光产额小于锰、铁元素,将钛元素的测定下限定为 0.0020%;根据硅、铝元素在表 4 中的测定最低含量为 0.0050%,XRF 测定值和标准值或 化学值测定吻合,因此硅、铝元素的测定下限定为 0.0050%。

预审会议后征求意见中, 2023年9月有单位提出因为锌、锰、铁、铜、钛、锶、镍、铅等元素的测定下限不一致(有的为0.0010%,有的为0.0020%),参考氧化铝和铝用炭素 微量元素的下限范围规定,建议将上述元素的下限规定一致,即上述元素的测定下限定为锌、锰、硅、铁、铜、钛、锶、镍、铅。

锌 锶 元素 铝 硅 钛 锰 铁 镍 铜 钇 钕 钆 铅 原子序数 13 28 30 38 39 60 64 82 14 22 25 26 29 0. 320 | 0. 375 | 0. 410 | 0. 435 | 0. 685 | 0. 71 K 壳层荧光产额/ωκ 0.040 0.055 0. 220 | 0. 285 0.92 0.935 0.97

表 5 元素的 K 壳层荧光产额

利用镁合金标样 E5121-E5129,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定标样中铈元素的最低含量数值;利用镁合金内控样 GdY51B-GdY114B,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定内控标样中锆元素的最低含量数值;测定结果见表 6。表 6 数据中在 0.1%含量级别范围,XRF 测定结果和标准值一致,由于锆、铈元素属于外加元素,正常纯镁中没有这两种元素,结合产品标准中含量下限以及表 6 测定数据,锆、铈元素测定下限定为 0.10%。

表 6 锆、铈元素低点测定数据 单位:%

样品	Ce	Zr
E5121 标准值	0.149	——
E5121 XRF 测定值	0.141	——
GdY94B-C ICP 值		0.081
GdY94B-C XRF 测定值		0.088

利用镁合金标样 E9142-E9146 和 E9151-E9159, 利用铣床加工样品, 在帕纳科 PW2403

设备制作工作曲线,测定标样中钇元素的最低含量数值,见表 7。表 7 数据中在 0.1%含量级别范围,XRF 测定结果和标准值一致,由于钇元素属于外加元素,结合产品标准中含量下限以及表 7 测定数据,钇元素测定下限定为 0.10%。

表 7 钇元素低点测定数据 单位: %

样品	Y
E9158 标准值	0.134
E9158 XRF 测定值	0.167

利用镁合金标样 E6321-E6324,利用车床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定标样中锶元素的最低含量数值,见表 8。表 8 数据中在 0.0015%含量级别范围,XRF测定结果和标准值一致,由于锶元素属于外加元素,结合产品标准中含量下限以及表 8 测定数据,锶元素测定下限定为 0.0010%。

表 8 锶元素低点测定数据

单位: %

样品	Sr
E6321 标准值	0.0015
E6321 XRF 测定值	0.0018

利用镁合金标样 E6331-E6336,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定标样中钕元素的最低含量数值,见表 9。表 9数据中在 0.429%含量级别范围,XRF测定结果和标准值一致,由于钕元素属于外加元素,考虑到后续可能有相应的低含量标样产生,结合产品标准中含量下限以及表 9测定数据,钕元素测定下限定为 0.10%。

表 9 钕元素低点测定数据

单位: %

单位: %

样品	Nd
E6331 标准值	0.429
E6331 XRF 测定值	0.415

利用镁合金钆钇内控样品 GdY 系列(化学定值),利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定钆元素的最低含量数值,见表 10。表 10 数据中在 5.85%含量级别范围,XRF 测定结果和标准值一致,由于钆元素属于外加元素,考虑到后续可能有相应的低含量标样产生,钆元素测定下限定为 0.10%。

表 10 钆元素低点测定数据

样品	Gd
GdY63B-ICP 化学值	5. 49
GdY63B-XRF 测定值	5. 523

3.2.2 测定上限的确定

利用纯镁标样 E4131-E4137 和 G311-G316,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定标样中铅、钛元素的最高含量数值,测定结果见表 11。表 11 数据中铅、钛元素的化学值或标准值和 XRF 测定值一致,证明 XRF 可以测定到此含量范围,考虑

到铅、钛元素均为微量杂质元素,微量元素相对具有较好的外延性,测定上限均可以超过表 11 测定范围,因此将铅元素的测定上限定为 0.050%, 钛元素的测定上限定为 0.010%。

表 11 纯镁中高含量测定数据

单位:%

样品	Pb	样品	Ti	
E4132 化学值	0.037	0.037 E4136 化学值		
E4132 XRF 测定值	0.0367	E4136 XRF 测定值	0. 0025	

利用镁合金标样 E2600-E2616、E2631-E2635 和 G301-G305,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定标样中硅、铁、铝元素的最高含量数值,测定结果见表 12。表 12 数据中硅、铁、铝元素的标准值和 XRF 测定值一致,证明 XRF 可以测定到此含量范围,因此将硅的测定上限定为 2.00%,铁元素测定上限定为 0.050%,铝元素测定上限定为 12.00%。

表 12 常规镁合金中高含量测定数据

单位:%

样品	Si	样品	Fe	样品	Al
E2635 标准值	1.83	E2616 标准值	0.039	E2615 标准值	11. 52
E2635 XRF 测定值	1.887	E2616 XRF 测定值	0.0382	E2615 XRF 测定值	11.802

利用镁合金标样 E5121-E5129,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定标样中铈元素的最高含量数值;利用镁合金内控样 GdY51B-GdY114B,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定内控标样中锆元素的最高含量数值;测定结果见表 13。表 13 数据中铈、锆元素的标准值和 XRF 测定值一致,证明 XRF 可以测定到此含量范围,因此将铈的测定上限定为 4.50%,锆元素测定上限定为 1.00%。

表 13 镁合金中铈、锆高含量测定数据

单位: %

样品	样品 Ce		Zr		
E5128 标准值	4.16	GdY63B ICP 化学值	1.04		
E5128 XRF 测定值	4. 105	GdY63B XRF 测定值	1.110		

利用镁合金标样 E9142-E9146、E9151-E9159 和 E5131-E5135,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定锌、锰、铜、镍、钇元素的最高含量数值,测定结果见表 14。表 14 数据中锌、锰、铜、镍、钇元素的标准值和 XRF 测定值一致,证明 XRF可以测定到此含量范围,因此 XRF 实际的锌的测定上限为 8.5%,锰元素测定上限为 1.50%,铜元素测定上限为 5.00%,镍元素测定上限为 0.060%,钇元素测定上限为 4.50%。

表 14 锌、锰、铜、镍、钇镁合金中高含量测定数据

单位:%

样品	Zn	样品	Mn	样品	Cu	样品	Ni	样品	Y
ZnY-6-B 化	0.25	E9151 标	1 10	E9151 化	4 50	E5133 标	0.055	E9151 化	4. 54
学值	8.35	准值	1. 19	学值	4. 50	准值	0.055	学值	
ZnY-6-B			4 F10	E5133	0.0545	E9151	4. 62		
XRF 测定值	8.26	XRF 测定	1. 146	XRF 测定	4.519	XRF 测定	0.0545	XRF 测定	4.02

	71.	71.	71.	71.	
	/古	/古	/古	石	
	18	18	18	18	
	1111	1124	III.	100	

利用镁合金标样 E6321-E6324,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定标样中锶元素的最高含量数值,见表 15。表 15 数据中在 0.028%含量级别范围,XRF 测定结果和标准值一致,锶元素测定上限定为 0.030 %。

表 15 锶元素高点测定数据

74 -	1 1
样品	Sr
E6324 标准值	0. 028
E6324 XRF 测定值	0. 0281

利用镁合金标样 E6331-E6336,利用车床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定标样中钕元素的最高含量数值,见表 16。表 16 数据中在 3.55%含量级别范围,XRF 测定结果和标准值一致,钕元素测定上限定为 3.50%。

表 16 钕元素高点测定数据

单位: %

单位:%

样品	Nd
E6335 标准值	3. 55
E6335 XRF 测定值	3. 499

利用镁合金钆钇内控样品 GdY51B-GdY114B 系列(化学定值),利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,测定标样中钆元素的最高含量数值,见表 17。表 17数据中在 10.68%含量级别范围,XRF测定结果和标准值一致,钆元素测定上限定为 11.00%。

表 17 钆元素高点测定数据 单位: %

样品	Gd
GdY114 ICP 化学值	10.68
GdY114 XRF 测定值	10.816

3.3 方法原理

将样品加工制成适合 X 射线荧光光谱仪测量的尺寸,测量样片中待测元素的荧光 X 射线强度。根据校准曲线或方程来分析,且进行基体元素和元素间干扰校准。校准方程用系列标准样品建立。用有证标准样品验证,测定样品进而得到相关元素含量。

3.4 试样要求

取样方法可参考"GB/T 17432变形铝及铝合金化学分析取样方法"中取样,从铸锭、铸件、加工产品上选取时,应选取代表性部位取样;选取的块状样品需要加工制成适合 X 射线荧光光谱仪测量的尺寸,即加工后的样品能安全放入 XRF 设备样品杯中,块状样品的测量面经过车床或铣床加工后方能测定。

3.4.1 XRF 样品杯尺寸

由于不同 XRF 生厂商的样品杯内有效高度、样品杯内直径、测量面直径有差异,需要将样品加工制成适合 X 射线荧光光谱仪测量的尺寸。表 18 为常见 XRF 设备样品杯的尺寸统计数据。

通常样品杯高度为 3cm-5cm,但必须注意部分上照射设备的样品杯在进样口处有密封盖,密封盖子底部有凸起,样品杯进样后密封盖底部凸起伸入到样品杯中,侵占样品杯高度,实际样品高度必须低于样品杯内高度(此为样品杯内可放置样品的有效高度),必须避免样品卡顿或盖不严现象;样品杯内直径通常为 4cm-6cm,而样品测量面通常在 2cm-3.5cm,制取样品必须能放入样品杯,同时必须大于测量面直径,测量面必须完全被覆盖,不能有缺口、漏洞。

表 18 常见 XRF 设备样品杯尺寸

单位: cm

XRF 供应商以及型号	照射方式	杯内有效高度	杯内直径	测量面直径
帕纳科—PW2403	下照射	35	52	27
岛津—XRF1800	上照射	37	57	30
帕纳科-AXiOSMAX ninerals	下照射	35	52	32
布鲁克-S8	下照射	50	45	18/28
布鲁克-S8-tiger	下照射	47	51	18/28
帕纳科-Zetium	下照射	50	40	10/27

因此标准文本中的试样尺寸规定为:

试样制备应保证试样能放入 X 射线荧光光谱仪样品杯中,并且试样测量面能完全紧密覆盖圆形的激发面,否则视为无效样片。试样厚度应不小于 5mm,但不能超过样品杯高度,避免影响正常测试。

3.4.2 砂纸抛光效果

砂纸尽管可以起到打磨除去氧化层、抛光金属材料的作用,但不同材质的砂纸表面含有不同的抛光材料元素,例如氮化硅、氧化铝、氧化铬等,这些元素会严重污染测量面。选取纯镁标准样品 G311、G312、G313 先使用铣床加工表面然后使用纯镁程序测定,后再次使用不同砂纸抛光,测定结果见表 19-表 21。结果表明被测样品的硅元素、铝元素污染严重,测定结果影响极大,但锌、锰、铁、铜、镍、铅等元素影响相对较小。

表 19 中铝郑州-砂纸抛光对纯镁样品的污染

单位: %

	A1	Zn	Mn	Si	Fe	Cu	Ni	Pb	Ti
G311 标准值	0.0052	0.058	0.092	0.015	0.0054	0.062	0.0041	0.012	0.0002
G311 铣床处理 XRF 值	0.0042	0.0596	0.0914	0.0127	0.0043	0.0651	0.0044	0.0119	0.0003
G311 砂纸 A 处理 XRF 值	0. 2435	0.0602	0.0910	3. 5269	0.0062	0.0659	0.0045	0.0118	0.0002
G311 砂纸 B 处理 XRF 值	0. 5369	0.0608	0.0916	1.5687	0.0056	0.0649	0.0046	0.0119	0.0005
G312 标准值	0.063	0.038	0.062	0.037	0.012	0.037	0.012	0.0073	0.0005
G312 铣床处理 XRF 值	0.0644	0.0389	0.0621	0.0379	0.0127	0.0365	0.0116	0.0071	0.0004
G312 砂纸 A 处理 XRF 值	0. 2593	0.0399	0.0614	3.680	0.0136	0.0396	0.0124	0.0071	0.0005
G312 砂纸 B 处理 XRF 值	0.6683	0.0400	0.0626	1.7735	0.0137	0.0386	0.0123	0.0071	0.0003
G313 标准值	0.055	0.020	0.039	0.055	0.015	0.017	0.0070	0.0035	0.0003
G313 铣床处理 XRF 值	0.0554	0.0215	0.0388	0.0533	0.0148	0.0178	0.0077	0.0038	0.0003
G313 砂纸 A 处理 XRF 值	0. 2632	0.0211	0. 0377	3. 2529	0.0169	0.0187	0.0079	0.0038	0.0002
G313 砂纸 B 处理 XRF 值	0.7750	0.0211	0.0390	1.3142	0.0169	0.0183	0.0079	0.0039	0.0002

结果 元素	A1	Zn	Mn	Si	Fe	Cu	Ni	Pb	Ti
G311 标准值	0.0052	0.058	0.092	0.015	0.0054	0.062	0.0041	0.012	0.0002
G311 铣床处理 XRF 值	0.0049	0.0576	0.0911	0.0139	0.0053	0.0656	0.0042	0.0119	0.0002
G311 砂纸 A 处理 XRF 值	0.1108	0. 0581	0.0910	2. 8269	0.0060	0.0653	0.0043	0.0118	0.0003
G311 砂纸 B 处理 XRF 值	0. 2364	0. 0583	0.0916	1. 592	0.0062	0.0649	0. 0042	0.0126	0.0004
G312 标准值	0.063	0.038	0.062	0.037	0.012	0.037	0.012	0.0073	0.0005
G312 铣床处理 XRF 值	0.0654	0. 0379	0.0621	0. 0383	0.0124	0.0376	0.0115	0.0070	0.0006
G312 砂纸 A 处理 XRF 值	0. 2793	0. 0398	0.0614	2.984	0.0133	0.0388	0.0121	0.0071	0.0004
G312 砂纸 B 处理 XRF 值	0.5883	0. 0404	0.0626	1. 7735	0.0137	0.0386	0.0123	0.0071	0.0004
G313 标准值	0.055	0.020	0.039	0.055	0.015	0.017	0.0070	0.0035	0.0003
G313 铣床处理 XRF 值	0.0544	0.0212	0.0380	0.0543	0.0148	0.0178	0.0073	0.0039	0.0005
G313 砂纸 A 处理 XRF 值	0. 2033	0. 0215	0.0387	3. 0536	0.0169	0.0187	0.0079	0.0038	0.0004
G313 砂纸 B 处理 XRF 值	0.8770	0.0211	0.0403	1. 5142	0.0169	0.0183	0.0079	0.0039	0.0004
	表 21	国家镁中	心-砂纸抛光	对纯镁样品	的污染	单	位: %		

	A1	Zn	Mn	Si	Fe	Cu	Ni	Pb	Ti
G311 标准值	0.0052	0.058	0.092	0.015	0.0054	0.062	0.0041	0.012	0.0002
G311 铣床处理 XRF 值	0.0055	0. 0553	0.0901	0.0143	0.0050	0.0601	0.0044	0.0102	0.0003
G311 碳化硅砂纸处理 XRF 值	0. 1562	0.0610	0.0908	4. 1297	0.0052	0.0614	0.0047	0.1311	0.0004
G312 氧化铝砂纸处理 XRF 值	0. 3179	0.0576	0.0918	0.3199	0.0049	0.0593	0.0037	0.1102	0.0003
G312 标准值	0.063	0.038	0.062	0.037	0.012	0.037	0.012	0.0073	0.0005
G312 铣床处理 XRF 值	0.0608	0. 0359	0.0641	0.0348	0.0134	0.0355	0.0116	0.0069	0.0005
G312 碳化硅砂纸处理 XRF 值	0. 5359	0.0371	0.0611	3.6822	0.0124	0.0383	0.0132	0.0060	0.0004
G312 氧化铝砂纸处理 XRF 值	1. 2587	0. 0355	0.0624	0.1315	0.0129	0.0359	0.0128	0.0065	0.0005
G313 标准值	0.055	0.020	0.039	0.055	0.015	0.017	0.0070	0.0035	0.0003
G313 铣床处理 XRF 值	0. 0554	0.0216	0. 0375	0.0533	0.0144	0.0178	0.0059	0.0031	0.0004
G313 碳化硅砂纸处理 XRF 值	0. 2632	0.0228	0. 0369	3. 2529	0.0135	0.0162	0.0063	0.0038	0.0003
G313 氧化铝砂纸处理 XRF 值	0. 7750	0. 0207	0.0411	0. 1717	0.0139	0.0166	0.0058	0.0031	0.0003

选取镁合金标准样品 E2612、E2613 先使用铣床加工表面然后使用纯镁程序测定,后再 次使用不同砂纸抛光,测定结果见表 22-表 24,结果表明被测样品的硅元素、铝元素污染严 重,但锌、锰、铁、铜、镍等元素影响相对较小。

表 20 中铝郑州院-砂纸抛光对镁合金样品的污染

单位: %

	A1	Zn	Mn	Si	Fe	Cu	Ni
E2612 标准值	7.18	2. 99	0. 339	0.097	0.013	0.087	0.0045
E2612 铣床处理 XRF 值	7. 086	2. 953	0.326	0.0982	0.0123	0.0882	0.0049
E2612 砂纸 A 处理 XRF 值	5. 3543	2. 9872	0.3244	1.8222	0.0127	0.088	0.0051
E2612 砂纸 B 处理 XRF 值	7. 0357	2. 9792	0. 3359	0.5809	0.0131	0. 0879	0.0049
E2613 标准值	6.96	1.94	0. 231	0.28	0.023	0.164	0.0136
E2613 铣床处理 XRF 值	6. 896	1. 938	0. 218	0. 268	0.0204	0. 167	0.0136
E2613 砂纸 A 处理 XRF 值	5. 726	1. 9993	0. 2134	1.3384	0.0185	0. 1622	0.0134
E2613 砂纸 B 处理 XRF 值	5. 7159	2.0003	0. 2126	1. 3366	0.0188	0. 1622	0.0136

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
E2612 标准值	7.18	2. 99	0.339	0.097	0.013	0. 087	0.0045
E2612 铣床处理 XRF 值	7. 162	2. 982	0. 319	0. 113	0.0117	0.0880	0.0050
E2612 砂纸 A 处理 XRF 值	7. 414	2. 9872	0. 3244	1. 232	0.0129	0.0892	0.0051
E2612 砂纸 B 处理 XRF 值	8. 557	2. 9799	0. 3459	0.3817	0.0143	0.0882	0.0053
E2613 标准值	6.96	1.94	0. 231	0.28	0.023	0.164	0.013
E2613 铣床处理 XRF 值	6.964	1.942	0. 238	0. 298	0.0244	0. 165	0.0136
E2613 砂纸 A 处理 XRF 值	7. 023	1. 993	0. 2152	1,568	0.0185	0. 1622	0.0134
E2613 砂纸 B 处理 XRF 值	8. 543	1. 986	0.2100	1.046	0.0188	0. 1622	0.0136

表 22 国家镁中心-砂纸抛光对镁合金样品的污染

单位:%

	A1	Zn	Mn	Si	Fe	Cu	Ni
E2612 标准值	7.18	2. 99	0.339	0.097	0.013	0.087	0.0045
E2612 铣床处理 XRF 值	7. 0002	2.8675	0.3279	0.0954	0.0124	0.0852	0.0044
E2612 碳化硅砂纸处理 XRF 值	6. 5214	2. 9568	0.3201	1.3548	0.0119	0.0846	0.0049
E2612 氧化铝砂纸处理 XRF 值	8. 0258	2. 9638	0.3397	0.6688	0.0135	0.0869	0.0040
E2613 标准值	6.96	1.94	0. 231	0.28	0.023	0.164	0.013
E2613 铣床处理 XRF 值	6. 7598	1.920	0.2165	0. 261	0.0211	0. 1622	0.0124
E2613 碳化硅砂纸处理 XRF 值	6. 0235	1. 9233	0.2087	1.2064	0.0199	0. 1616	0.0128
E2613 氧化铝砂纸处理 XRF 值	7. 5346	1.9154	0.2199	0.6652	0.0226	0. 1648	0.0137

尽管表 19-表 24 中使用的砂纸属于含铝或氧的砂纸,其对锌、锰、铁、铜、镍、铅等元素影响相对较小,但由于砂纸所粘附的颗粒物中元素类别或含量未知,存在污然样品的可能,因此本标准中不建议使用砂纸,因此标准文本中的试样尺寸规定为:

试样的测量面用车床或铣床加工成光洁平面,应避免使用砂纸抛光方式,如使用砂纸抛 光必须保证无杂质引入,并在检测报告中标明"砂纸抛光"。对于校正样品和未知样品应该 采用相同条件的加工处理方法,处理后表面光洁、无夹渣、气孔的样品应立刻进行测定。

3.4.3 铣床和车床加工效果

加工好尺寸样品的测量面利用车床或铣床进行切削加工;为对比铣床和车床的加工效果,将同一批镁及镁合金标样分别使用铣床和车床加工后,在同一 XRF 设备上,同一条件下建立工作曲线;由于不同表面处理方式得到不同的处理效果,可以通过工作曲线相关数据以及实际样品的测定数据反应。

3.4.3.1 铣床和车床加工对纯镁测定的影响

首先利用纯镁标样 E4131-E4137 和 G311-G316,利用铣床加工样品,中铝郑州院分别在帕纳科 PW2403 设备和岛津 XRF1800 设备制作工作曲线,利用标样对标验证正确度;然后再次利用纯镁标样 E4131-E4137 和 G311-G316,利用车床加工样品,分别在帕纳科 PW2403 设备和岛津 XRF1800 设备制作工作曲线,利用标样验证正确度;铣床和车床程序的对标测定结果见表 21,数据证明铣床和车床测定均能和标样值相吻合。

表 21 中铝郑州院-纯镁铣床和车床加工测定数据

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
----	----	----	----	----	----	----	----	----	----

E4131 标准值	0.011	0.0028	0.0012	0.011	0.017	0.011	0.00035	0.0052	0.00026
铣床帕纳科 XRF 测定值	0.0111	0.0029	0.0011	0.0115	0.0169	0.0103	0.0001	0.0055	0.0004
铣床岛津 XRF 测定值	0. 0117	0.0025	0.0016	0.0141	0.0170	0.0111	0.0004	0.0055	0.0002
车床帕纳科 XRF 测定值	0.0116	0.0028	0.0011	0.0112	0.017	0.0103	0.0001	0.0054	0.0004
车床岛津 XRF 测定值	0.0095	0.0030	0.0019	0.0129	0.0169	0.0114	0.0003	0.0051	0.0005
E4135 标准值	0.0063	0.0022	0.00063	0.0059	0.006	0.0079	0.00033	0.002	0.0004
铣床帕纳科 XRF 测定值	0.0053	0.0023	0.0005	0.0048	0.0058	0.0073	0.0003	0.0020	0.0006
铣床岛津 XRF 测定值	0.0050	0.0017	0.0008	0.0042	0.0059	0.0085	0.0004	0.0020	0.0003
车床帕纳科 XRF 测定值	0.0053	0.0024	0.0004	0.0037	0.0059	0.0073	0.0003	0.0020	0.0002
车床岛津 XRF 测定值	0.0045	0.0021	0.0009	0.0050	0.0055	0.0085	0.0006	0.0018	0.0003

注:铣床加工完毕先在帕纳设备科制作程序,然后再在岛津设备制作程序;车床加工完毕,;先在帕纳设备科制作程序,然后再在岛津设备制作程序。

洛阳空空导弹院测定结果见表 22, 国家镁中心测定结果见表 23。

表 22 导弹院-纯镁铣床和车床加工测定数据

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
E4131 标准值	0.011	0.0028	0.0012	0.011	0.017	0.011	0.00035	0.0052	0.00026
铣床测定值	0.014	0.0026	0.0011	0.0141	0.0168	0.0102	0.00015	0.0054	0.00044
车床测定值	0.013	0.0028	0.0008	0.0132	0.0172	0.0103	0.00011	0.0054	0.00031
E4135 标准值	0.0063	0.0022	0.00063	0.0059	0.006	0.0079	0.00033	0.002	0.0004
铣床测定值	0.0057	0.0026	0.0003	0.0062	0.0058	0.0072	0.00019	0.0019	0.00046
车床测定值	0.0051	0.0024	0.0004	0.0047	0.0059	0.0073	0.00031	0.0020	0.0002

表 23 国家镁中心-纯镁铣床和车床加工测定数据

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
E4131 标准值	0.011	0.0028	0.0012	0.011	0.017	0.011	0.00035	0.0052	0.00026
铣床加工	0.0114	0.0026	0.0011	0.0103	0.0165	0.0101	0.0002	0.0049	0.0002
车床加工	0.0112	0.0025	0.0012	0.0109	0.0162	0.0115	0.0003	0.0054	0.0003
E4135 标准值	0.0063	0.0022	0.00063	0.0059	0.006	0.0079	0.00033	0.002	0.0004
铣床加工	0.0062	0.0021	0.0006	0.0055	0.0068	0.0071	0.0002	0.0018	0.0003
车床加工	0.0059	0.0024	0.0006	0.0058	0.0061	0.0077	0.0003	0.0017	0.0003

XRF制作工作曲线时,XRF设备扫描记录每一个标样的各个元素的荧光强度,并根据曲线及校正自动计算出 XRF测定的标样值,曲线中同一元素所有测定值和标样值差值的平方之和除以标样个数 n 的开方,被称为准确度系数或 RMS,该系数可以反应出曲线的制作优劣,系数越小说明曲线制作越好。先在铣床加工纯镁标准样品,中铝郑州院在帕纳科PW2403型设备和岛津 XRF1800设备上制作纯镁工作曲线,后利用车床加工同一批纯镁标准样品,分别在帕纳科PW2403型设备和岛津 XRF1800设备上制作纯镁工作曲线,不同加工方式在不同设备上制作的工作曲线的准确度系数见表 24。

表 24 中铝郑州院-纯镁铣床和车床加工曲线的数据

准确度系数	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti	C1
铣床-PW2403	0.00095	0.00068	0.00031	0.00229	0.00066	0.00142	0.00028	0.00047	0.00025	0.00039
车床-PW2403	0.00113	0.00069	0.00030	0.00242	0.00067	0.00145	0.00030	0.00050	0.00030	0.00042

铣床-XRF1800	0.001085	0.000544	0.000388	0.003122	0.000608	0.001309	0.000255	0.000501	0.000125	0.000419
车床- XRF1800	0.001252	0.000551	0.000395	0.003362	0.000610	0.001302	0.000263	0.000506	0.000128	0.000423

洛阳空空导弹院测定结果见表 25, 国家镁中心测定结果见表 26。

表 25 导弹院-纯镁铣床和车床加工曲线的准确度系数

准确度系数	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti	Cl
铣床	0.0013	0.0008	0.0003	0.0022	0.0017	0.0014	0.0003	0.0005	0.0003	0.0004
车床	0.0018	0.0009	0.0005	0.0024	0.0016	0.0015	0.0003	0.0005	0.0006	0.0005

表 26 国家镁中心-纯镁铣床和车床加工曲线的数据

准确度系数	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti	Cl
铣床	0.00085	0.00050	0.00044	0.00112	0.00071	0.00091	0.00072	0.00064	0.00058	0.00046
车床	0.00097	0.00052	0.00059	0.00135	0.00077	0.00092	0.00077	0.00061	0.00059	0.00044

3.4.3.2 铣床和车床加工对常规镁合金测定的影响

利用常规镁合金标样 E2600-E2616、E2631-E2635 和 G301-G305,利用铣床加工样品,中铝郑州院分别在帕纳科 PW2403 设备和岛津 XRF1800 设备制作工作曲线,利用标样对标验证正确度;然后再次利用镁合金标样 E2612 和 E2613,利用车床加工样品,分别在帕纳科 PW2403 设备和岛津 XRF1800 设备制作工作曲线,利用标样验证正确度;铣床和车床程序的对标测定结果见表 27,数据证明铣床和车床测定均能和标样值相吻合。

表 27 中铝郑州院-常规镁合金的铣床和车床加工测定数据

单位: %

	A1	Zn	Mn	Si	Fe	Cu	Ni
E2612 标准值	7.18	2. 99	0.339	0.097	0.013	0. 087	0.0045
铣床 1 帕纳科 XRF 测定值	7. 086	2. 953	0.326	0.0982	0.0123	0.0882	0.0049
铣床 1 岛津 XRF 测定值	7. 103	2. 972	0. 327	0.105	0.0134	0.0906	0.0052
车床 1 帕纳科 XRF 测定值	7. 203	2. 972	0.310	0.103	0.0131	0.0883	0.0050
车床 1 岛津 XRF 测定值	7. 156	2. 986	0.313	0.106	0.0132	0.0889	0.0051
E2613 标准值	6.96	1.94	0. 231	0.28	0.023	0. 164	0.013
铣床 1 帕纳科 XRF 测定值	6. 896	1. 938	0. 218	0. 268	0.0204	0. 167	0.0136
铣床 1 岛津 XRF 测定值	6. 873	1. 955	0. 210	0. 272	0.0204	0. 169	0.0139
车床 1 帕纳科 XRF 测定值	6.900	1.916	0. 207	0. 266	0.0205	0. 163	0.0134
车床 1 岛津 XRF 测定值	6. 991	1.962	0. 217	0. 272	0.0208	0. 170	0.0144

洛阳空空导弹院测定结果见表 28, 国家镁中心测定结果见表 29, 数据证明铣床和车床测定均能和标样值相吻合。

表 28 导弹院-常规镁合金的铣床和车床加工测定数据

单位: %

样品	A1	Zn	Mn	Si	Fe	Cu	Ni			
E2612 标准值	7. 18	2. 99	0.339	0.097	0.013	0.087	0.0045			
铣床测定值	7. 163	2. 982	0.319	0. 113	0.0117	0.0880	0.0050			
车床测定值	7. 165	2. 986	0.313	0. 105	0.0122	0. 0895	0.0051			
E2613 标准值	6.96	1.94	0. 231	0.28	0.023	0. 164	0.013			
铣床测定值	6. 894	1.942	0. 228	0. 283	0.0214	0. 1651	0.0139			
车床测定值	6. 877	1.950	0. 213	0. 271	0.0224	0. 169	0.0140			

表 29 国家镁中心-常规镁合金的铣床和车床加工测定数据

单位: %

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
E2612 标准值	7.18	2.99	0.339	0.097	0.013	0.087	0.0045
铣床加工	7. 0988	2. 9534	0.3248	0.9654	0.0128	0.0865	0.0041
车床加工	7. 1398	2. 9852	0.3341	0.09621	0.01345	0.08722	0.047
E2613 标准值	6.96	1.94	0.231	0.28	0.023	0.164	0.013
铣床加工	6. 9566	1.9221	0. 2355	0. 2645	0. 2011	0. 1633	0.0136
车床加工	6. 9254	1.9248	0. 2248	0. 2722	0.0221	0. 1611	0.0134

中铝郑州院常规镁合金不同加工方式在不同设备上制作的工作曲线的准确度系数(也称为残差、剩余方差、RMS)见表 30,洛阳空空导弹院测定结果见表 31,国家镁中心测定结果见表 32。

	1C 30 1 11		大 口 亚 ルルト	TH + // N/ // L L	U = X 1 3X 1/h		
准确度系数	A1	Zn	Mn	Si	Fe	Cu	Ni
铣床 1-PW2403	0. 16951	0. 02113	0.02579	0. 02587	0.00253	0.00293	0.00058
车床 1-PW2403	0. 15711	0. 02278	0.02828	0. 02666	0.00246	0.00321	0.00060
铣床 2-PW2403	0.15830	0. 02589	0. 02487	0. 02339	0.00247	0.00286	0.00063
车床 2-PW2403	0. 16232	0. 02467	0.02541	0. 02576	0.00258	0.00303	0.00065
铣床 1-XRF1800	0. 150363	0. 044379	0.018618	0.022865	0.002030	0.004071	0.000726
车床 1-XRF1800	0. 127038	0.047152	0. 027755	0.020522	0.002013	0.003671	0.000657

表 30 中铝郑州院-常规镁合金铣床和车床加工曲线的数据

注:铣床加工完毕先在帕纳设备科制作程序,然后再在岛津设备制作程序;车床加工完毕先在帕纳设备科制作程序,然后再在岛津设备制作程序;铣床1表示第一次铣床加工,车床1表示第一次车床加工,铣床2表示第二次铣床加工,车床2表示第二次车床加工,第2次铣床或车床加工仅仅作为对比准确度系数,未用E2612和E2613测定准确度。

_		C - 13 3 1 12	0 110790 PC FI 3	L 96/1•1// 1 //1	*/VH === H >/(H)	TE 1911/2/11/2/		
	准确度系数	A1	Zn	Mn	Si	Fe	Cu	Ni
ľ	铣床	0.068	0.023	0.024	0.018	0.0017	0.0040	0.0006
ſ	车床	0.075	0.023	0.026	0.020	0.0020	0.0037	0.0006

表 31 导弹院-常规镁合金铣床和车床加工曲线的准确度系数

表 32	国家镁山心	常规镁合金铣	未和在床加工	曲线的粉捉
1X 32	四秋珠午心		$N M \rightarrow N M M$. LLL (X LLL X X 1/16)

准确度系数	A1	Zn	Mn	Si	Fe	Cu	Ni
铣床	0. 25486	0. 04521	0.01152	0. 01564	0.00754	0.00354	0.00052
车床	0. 24987	0.04864	0.01423	0.01517	0.00851	0.00388	0.00044

小结:表 21-表 23 中纯镁个体样品和表 27-表 29 中镁合金个体标样的测定数据表明铣床和车床处理样品,XRF测定值和标样值均可以相吻合;表 24-表 26 中纯镁曲线和表 30-表 31 镁合金曲线的各元素的准确度系数(也称为残差、剩余方差、RMS)数据代表了处理效果对应的测定效果,整体而言铣床和车床处理后的准确度系数处于同一水平,但表 24-表 26 对应的纯镁曲线测定中,铣床对应的曲线准确度系数整体上略微优于车床的准确度系数,表 30-表 32 对应的是相对高含量的常规镁合金处理及测定数据,铣床对应的准确度系数和车床的准确度系数(也称为残差、剩余方差、RMS)互有高低;由于铣床整体的切削平整度优于车床,结合上述数据,本标准中优先推荐使用铣床加工。

3.4.4 放置时间对测定的影响

由于镁及镁合金的基体镁元素属于较活泼金属,其在空气中会自动氧化,可能会影响测

定数据,因此进行放置时间对测定的影响试验。

3.4.4.1 放置时间对纯镁测定的影响

首先利用纯镁标样 E4131-E4137 和 G311-G316,利用铣床加工样品,中铝郑州院分别在帕纳科 PW2403 设备设备制作工作曲线,立刻利用标样测定准确度,标样测定后接触空气放置在实验室中,间隔一定时间多次测定,以工作曲线制作完毕后计算时间,测定结果见表33,洛阳空空导弹院测定结果见表34,国家镁中心测定结果见表35。

表 33 中铝郑州院-放置时间对纯镁测定的影响

单位:%

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
E4131 标准值	0.011	0.0028	0.0012	0.011	0.017	0.011	0.00035	0.0052	0.00026
XRF 测定-0h	0.0111	0.0029	0.0011	0.0115	0.0169	0.0103	0.0001	0.0055	0.0004
XRF 测定-5h	0.0116	0.0028	0.0011	0.0120	0.0170	0.0103	0.0001	0.0054	0.0004
XRF 测定-9h	0.0123	0.0030	0.0012	0.0114	0.0172	0.0103	0.0002	0.0053	0.0005
XRF 测定-22h	0.0169	0.0029	0.0010	0.0186	0.0171	0.0104	0.0003	0.0055	0.0005
XRF 测定-28h	0.0195	0.0031	0.0011	0.0212	0.0170	0.0104	0.0002	0.0054	0.0006
XRF 测定−48h	0.0212	0.0032	0.0010	0. 0222	0.0169	0.0103	0.0002	0.0054	0.0006
XRF 测定-72h	0.0220	0.0031	0.0010	0. 0235	0.0169	0.0104	0.0003	0.0055	0.0007
XRF-72h 重新铣面	0.0104	0.0029	0.0009	0.0103	0.0166	0.0103	0.0001	0.0052	0.0005
E4135 标准值	0.0063	0.0022	0.00063	0.0059	0.006	0.0079	0.00033	0.0020	0.0004
XRF 测定-0h	0.0055	0.0024	0.0004	0.0052	0.0059	0.0073	0.0003	0.0020	0.0002
XRF 测定-5h	0.0053	0.0024	0.0004	0.0047	0.0059	0.0073	0.0003	0.0020	0.0002
XRF 测定-9h	0.0049	0.0022	0.0005	0.0044	0.0058	0.0073	0.0003	0.0019	0.0004
XRF 测定-22h	0.0083	0.0023	0.0005	0.0088	0.0058	0.0073	0.0003	0.0019	0.0006
XRF 测定-28h	0.0093	0.0023	0.0005	0.0101	0.0058	0.0073	0.0003	0.0020	0.0006
XRF 测定−48h	0.0110	0.0024	0.0003	0.0090	0.0056	0.0074	0.0004	0.0021	0.0005
XRF 测定-72h	0.0116	0.0024	0.0003	0.0096	0.0057	0.0074	0.0004	0.0021	0.0005
XRF-72h 重新铣面	0.0053	0.0023	0.0005	0.0048	0.0058	0.0073	0.0003	0.0020	0.0006

表 34 导弹院-放置时间对纯镁测定结果的影响

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
E4131 标准值	0.011	0.0028	0.0012	0.011	0.017	0.011	0.00035	0.0052	0.00026
XRF 测定-0h	0.0126	0.0026	0.0008	0.0131	0.0168	0.0102	0.00015	0.0054	0.00044
XRF 测定-5h	0.0129	0.0026	0.0009	0.0139	0.0170	0.0103	0.00014	0.0054	0.00043
XRF 测定-9h	0.0135	0.0027	0.0009	0.0143	0.0171	0.0103	0.00015	0.0053	0.00040
XRF 测定−22h	0.0179	0.0029	0.0010	0.0186	0.0171	0.0104	0.00016	0.0054	0.00041
XRF 测定−28h	0.0201	0.0030	0.0011	0.0202	0.0170	0.0104	0.00014	0.0054	0.00043
XRF 测定-48h	0.0231	0.0032	0.0011	0.0222	0.0169	0.0103	0.00015	0.0054	0.00046
XRF 测定-72h	0.0240	0.0031	0.0010	0.0234	0.0170	0.0104	0.00016	0.0055	0.00043
XRF-72h 重新铣面	0.0124	0.0028	0.0009	0.0129	0.0166	0.0103	0.00016	0.0054	0.00044
E4135 标准值	0.0063	0.0022	0.00063	0.0059	0.006	0.0079	0.00033	0.0020	0.0004
XRF 测定-0h	0.0056	0.0026	0.0003	0.0062	0.0058	0.0072	0.00019	0.0019	0.00046
XRF 测定-5h	0.0059	0.0026	0.0004	0.0067	0.0059	0.0073	0.00023	0.0020	0.00045
XRF 测定-9h	0.0063	0.0025	0.0004	0.0074	0.0058	0.0073	0.00031	0.0019	0.00043

1	XRF 测定-22h	0.0080	0.0024	0.0004	0.0092	0.0058	0.0073	0.00033	0.0019	0.00045
	XRF 测定-28h	0.0091	0.0026	0.0005	0.0106	0.0058	0.0073	0.00030	0.0020	0.00046
	XRF 测定-48h	0.0123	0.0025	0.0004	0.0109	0.0056	0.0074	0.00043	0.0021	0.00047
	XRF 测定-72h	0.0136	0.0025	0.0004	0.0116	0.0058	0.0074	0.00043	0.0021	0.00045
	XRF-72h 重新铣面	0.0055	0.0024	0.0004	0.0068	0.0057	0.0073	0.00036	0.0020	0.00046

表 35 国家镁中心-放置时间对纯镁测定的影响

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
E4131 标准值	0.011	0.0028	0.0012	0.011	0.017	0.011	0.00035	0.0052	0.00026
XRF 测定-0h	0.0121	0.0025	0.0012	0.0114	0.0175	0.0113	0.0002	0.0056	0.0003
XRF 测定-4h	0.0130	0.0029	0.0011	0.0120	0.0176	0.0115	0.0002	0.0058	0.0003
XRF 测定-8h	0.0138	0.0028	0.0013	0.0121	0.0174	0.0106	0.0003	0.0054	0.0004
XRF 测定-12h	0. 0155	0.0031	0.0013	0. 0177	0.0172	0.0115	0.0002	0.0056	0.0003
XRF 测定-24h	0.0218	0.0032	0.0011	0.0201	0.0173	0.0107	0.0003	0.0051	0.0003
XRF 测定-48h	0. 0244	0.0029	0.0010	0. 0225	0.0171	0.0115	0.0002	0.0055	0.0004
XRF 测定-72h	0. 0259	0.0030	0.0010	0. 0245	0.0165	0.0113	0.0002	0.0051	0.0004
XRF-72h 重新铣面	0.0115	0.0027	0.0010	0.0103	0.0167	0.0109	0.0003	0.0049	0.0004
E4135 标准值	0.0063	0.0022	0.00063	0.0059	0.006	0.0079	0.00033	0.0020	0.0004
XRF 测定-0h	0.0052	0.0025	0.0005	0.0063	0.0055	0.0072	0.0002	0.0023	0.0003
XRF 测定-4h	0.0066	0.0026	0.0005	0.0068	0.0059	0.0074	0.0003	0.0025	0.0003
XRF 测定-8h	0.0072	0.0024	0.0006	0.0062	0.0054	0.0074	0.0003	0.0020	0.0003
XRF 测定-12h	0.0088	0.0026	0.0005	0.0083	0.0056	0.0076	0.0003	0.0022	0.0004
XRF 测定-24h	0.0096	0.0025	0.0006	0.0104	0.0052	0.0072	0.0002	0.0022	0.0004
XRF 测定-48h	0.0125	0.0025	0.0004	0.0099	0.0053	0.0075	0.0004	0.0021	0.0005
XRF 测定-72h	0.0135	0.0026	0.0004	0.0115	0.0057	0.0075	0.0004	0.0024	0.0004
XRF-72h 重新铣面	0.0066	0.0023	0.0005	0.0050	0.0055	0.0076	0.0002	0.0022	0.0004

表 33-表 35 多家实验室数据表明,对于纯镁,放置时间的增加对低含量的硅元素和铝元素的测定结果有较明显的影响,随着时间增加硅元素和铝元素的测定值有增大趋势,放置时间对于低含量的铁、铜、锰、锌、铅等元素几乎没有影响,即使放置 3 天 (72h) 其测定值和标准值依旧吻合;将放置 3 天 (72h) 的样品重新进行铣面,低含量硅元素、铝元素测定结果和标准值相吻合,这可能是由于镁元素属于较活泼金属元素,被空气中氧气氧化后影响所致。因此对于纯镁样品以及低铝硅镁合金样品的 XRF 测定,在表面加工后需要立刻测定。由于表 33-表 35 中,"XRF 测定-0h"实际是在样品加工完毕、扫描制作曲线完毕后才开始的测定,样品放置时间约 2h 以内,因此推荐的样品放置时间不大于 2h。

3.4.4.2 放置时间对常规镁合金测定的影响

利用常规镁合金标样 E2600-E2616、E2631-E2635 和 G301-G305,利用铣床加工样品,中铝郑州院分别在帕纳科 PW2403 设备设备制作工作曲线,利用标样对标验证正确度,标样测定后放置,间隔一定时间多次测定,以工作曲线制作完毕后计算时间,测定结果见表 36,洛阳空空导弹院测定结果见表 37,国家镁中心测定结果见表 38。

表 36 中铝郑州-放置时间对常规镁合金测定的影响

单位: %

	A1	Zn	Mn	Si	Fe	Cu	Ni
G302 标准值	4.80	0. 95	0. 256	0.100	0.028	0.085	0.0047
XRF 测定-Oh	4. 856	0. 9598	0. 2488	0.0962	0.0274	0. 0827	0.0047
XRF 测定-5h	4. 868	0. 9585	0. 2493	0.0964	0.0279	0.0829	0.0051
XRF 测定-9h	4. 880	0.9590	0. 2497	0.0963	0.0274	0.0826	0.0048
XRF 测定-22h	4. 877	0. 9575	0. 2492	0.0971	0.0277	0.0826	0.0049
XRF 测定-28h	4.870	0. 9587	0. 249	0.0961	0.0280	0.0824	0.0048
XRF 测定-48h	4. 858	0. 9598	0. 2495	0.0966	0.0276	0. 0825	0.0047
XRF 测定-72h	4. 885	0. 9589	0. 2493	0.0969	0.0276	0. 0829	0.0047
E2613 标准值	6.96	1.94	0. 231	0.28	0.023	0. 164	0.013
XRF 测定-0h	6. 972	1. 9812	0.2180	0. 2666	0.0217	0. 1671	0.0138
XRF 测定-5h	6. 992	1. 9828	0. 2179	0. 2691	0.0215	0. 1674	0.0137
XRF 测定-9h	6. 995	1. 9816	0.2182	0. 2685	0.0218	0. 1669	0.0139
XRF 测定-22h	7. 042	1. 9925	0. 2205	0. 2716	0.0210	0. 1672	0.0139
XRF 测定-28h	7. 016	1.9929	0. 2191	0. 2706	0.0217	0. 1683	0.0139
XRF 测定-48h	7. 025	1.9899	0. 2203	0. 2730	0.0211	0. 1673	0.0139
XRF 测定-72h	7. 037	1.9943	0. 2205	0. 2722	0.0218	0. 1683	0.0138

表 37 导弹院-放置时间对常规镁合金测定的影响

单位: %

	A1	Zn	Mn	Si	Fe	Cu	Ni
E2613 标准值	6.96	1.94	0. 231	0.28	0.023	0. 164	0.013
XRF 测定-0h	6. 951	1. 962	0. 2265	0. 2776	0.0232	0. 1603	0.0136
XRF 测定-5h	6. 952	1. 966	0. 2264	0. 2790	0.0231	0. 1604	0.0137
XRF 测定-9h	6. 965	1. 968	0. 2262	0. 2799	0.0234	0. 1606	0.0138
XRF 测定-22h	7. 058	1. 975	0. 2265	0. 2813	0.0235	0. 1604	0.0138
XRF 测定-28h	7. 056	1. 983	0. 2263	0. 2806	0.0233	0. 1603	0.0138
XRF 测定-48h	7. 075	1. 989	0. 2264	0. 2830	0.0234	0. 1603	0.0139
XRF 测定-72h	7. 077	1. 993	0. 2267	0. 2852	0.0235	0. 1605	0.0138

表 38 国家镁中心-放置时间对常规镁合金测定的影响

单位: %

	A1	Zn	Mn	Si	Fe	Cu	Ni
E2613 标准值	6.96	1.94	0. 231	0.28	0.023	0.164	0.013
XRF 测定-0h	6. 9822	1.9322	0.2102	0. 2587	0.0204	0. 1602	0.0136
XRF 测定-4h	6. 9804	1.9349	0.2188	0. 2630	0.0209	0. 1609	0.0140
XRF 测定-8h	6. 9756	1. 9357	0.2155	0. 2611	0.0214	0. 1611	0.0141
XRF 测定-12h	6. 9921	1.9420	0.2210	0. 2628	0.0216	0. 1626	0.0138
XRF 测定-24h	6. 9901	1.9459	0.2190	0. 2617	0.0208	0. 1619	0.0141
XRF 测定-48h	7. 0014	1.9522	0. 2224	0. 2603	0.0221	0. 1608	0.0137
XRF 测定-72h	7. 0057	1.9648	0. 2255	0. 2655	0.0228	0. 1620	0.0140

表 36-表 38 数据表明,对于常规镁合金样品,放置时间的增加对相对高含量的硅元素和铝元素的测定结果的影响可以忽略,随着时间增加硅元素和铝元素的测定值保持相对稳定状态,放置时间对相对高含量的铁、铜、锰、锌等元素几乎没有影响,即使放置 3 天 (72h) 其测定值和标准值依旧吻合。

小结: 放置时间对于纯镁中微量的硅和铝元素影响较明显, 对于常规镁合金中高含量的

硅元素和铝元素影响可以忽略,这可能是因为硅元素和铝元素的原子序数较低,荧光产额(见表 5)较低所致;对于原子序数较高的铁、铜、锰、锌等元素,由于其荧光产额较高,即使微量级别,放置时间增加对于测定结果影响可以忽略;结合表 33 和表 35 数据,标准推荐镁及镁合金样品从表面加工完毕后放置时间不大于 2h。

3.5 镁及镁合金的 XRF 测定

镁及镁合金包含牌号众多,元素含量差别较大,从 XRF 分析角度,必须分类测定,测定对象的元素类别、元素含量和标准样品(或内控样品)中的应该尽量一致,例如纯镁样品,其 99%以上是金属镁,杂质元素含量较低,属于微量元素级别,必须使用纯镁标准样品制作工作曲线才能得到准确结果,如果使用常规镁合金样品标样测定测定结果出现极大偏差。根据目前国内镁及镁合金标准样品以及所得内控样品,按照纯镁系列、常规镁合金系列、锌铝铁合金系列、锌-铈合金系列、锌-钇-铜-铝合金系列、镁-钕系列、镁-锶合金系列、钆-钇-锆合金系列进行测定。

3.5.1 纯镁系列测定

纯镁 99%以上为镁元素,杂质含量极低,目前的纯镁标样有纯镁标样 E4131-E4137 和G311-G316,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,利用标样对标验证正确度,然后测定有化学值的纯镁样品,元素测定条件见表 39,测定结果见表 40,多次测定数据见表 41、表 42。为减少样品本身不均匀影响测定精密度,多次测定的样品取自同一平面内紧邻的 2-3 样块,分别加工 3-4 次后分别进行 XRF 测定,XRF 测定结果和化学值吻合,多次测定的数值一致。

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	元素	分析线	计数器	晶体	电压 (kV) /	谱峰角度	谱峰时间	背景角度	背景时间	PHD
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					电流 (mA)	/(2 ^θ)	/ (s)	/(2 ^θ)	/ (s)	范围
Cu K_{α} FPC LiF200 50/50 45.0338 16 +0.8360 10 37-65 A1 K_{α} FPC PET002 25/100 144.9234 30 +2.8392 16 20-80 Mn K_{α} FPC LiF200 50/50 63.1042 16 +1.0106 10 31-69 Zn K_{α} SC LiF200 50/50 41.7726 16 +0.8746 10 20-80 Ni K_{α} FPC LiF200 50/50 48.7082 16 +0.7706 10 36-66	Si	Kα	FPC	PET002	25/100	108.8800	30	+2. 1332	16	20-80
A1 K_{α} FPC PET002 25/100 144.9234 30 +2.8392 16 20-80 Mn K_{α} FPC LiF200 50/50 63.1042 16 +1.0106 10 31-69 Zn K_{α} SC LiF200 50/50 41.7726 16 +0.8746 10 20-80 Ni K_{α} FPC LiF200 50/50 48.7082 16 +0.7706 10 36-66	Fe	Kα	FPC	LiF200	50/50	57. 5978	16	+0. 7680	10	33-67
Mn K_{α} FPC LiF200 50/50 63.1042 16 +1.0106 10 31-69 Zn K_{α} SC LiF200 50/50 41.7726 16 +0.8746 10 20-80 Ni K_{α} FPC LiF200 50/50 48.7082 16 +0.7706 10 36-66	Cu	Kα	FPC	LiF200	50/50	45. 0338	16	+0.8360	10	37-65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	Kα	FPC	PET002	25/100	144. 9234	30	+2. 8392	16	20-80
Ni K _α FPC LiF200 50/50 48.7082 16 +0.7706 10 36-66	Mn	Kα	FPC	LiF200	50/50	63. 1042	16	+1.0106	10	31-69
	Zn	Kα	SC	LiF200	50/50	41.7726	16	+0. 8746	10	20-80
Pb L _c SC LiF200 50/50 33,8796 16 +0,8262 10 24-75	Ni	Kα	FPC	LiF200	50/50	48. 7082	16	+0. 7706	10	36-66
10 20 211200 0070000 10 070202 10 21100	Pb	Lα	SC	LiF200	50/50	33. 8796	16	+0. 8262	10	24-75
Ti K _α FPC LiF200 50/50 86.4424 20 +0.9234 10 24-73	Ti	Kα	FPC	LiF200	50/50	86. 4424	20	+0. 9234	10	24-73

表 39 中铝郑州院-帕纳科 PW2403 测定条件

表 40 中铝郑州院-纯镁 XRF 测定

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
E4131 标准值	0.011	0.0028	0.0012	0.011	0.017	0.011	0.00035	0.0052	0.00026
帕纳科 XRF 测定值	0.0111	0.0029	0.0011	0.0115	0.0169	0.0103	0.0001	0.0055	0.0004

E4135 标准值	0.0063	0.0022	0.00063	0.0059	0.006	0.0079	0.00033	0.002	0.0004
帕纳科 XRF 测定值	0.0055	0.0024	0.0004	0.0052	0.0059	0.0073	0.0003	0.0020	0.0002
Pure-1# 化学值	0.0108	0.0033	0.0007	0.0191	0.0141	0.0063	0.0002	0.0011	0.0004
Pure-1# XRF 测定值	0.0121	0.0038	0.0008	0.0192	0.0141	0.0062	0.0002	0.0007	0.0003
058# 化学值	0.0048	0.0032	0.0004	0.0078	0.0098	0.0057	0.0003	0.0006	0.0003
058#XRF 测定值	0.0066	0.0039	0.0004	0.0074	0.0107	0.0064	0.0001	0.0006	0.0004

表 41 中铝郑州院-Pure-1#纯镁样品的多次测定

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
Pure-1#-1	0.0114	0.0038	0.0009	0.0192	0.0141	0.0063	0.0001	0.0007	0.0002
Pure-1#-2	0.0126	0.0039	0.0007	0.0198	0.0139	0.0062	0.0003	0.0009	0.0003
Pure-1#-3	0.0121	0.0038	0.0008	0.0185	0.0139	0.006	0.0002	0.0007	0.0003
Pure-1#-4	0.0129	0.0039	0.0008	0.0186	0.014	0.0062	0.0002	0.0007	0.0002
Pure-1#-5	0.0116	0.0037	0.0007	0.019	0.014	0.0063	0.0003	0.0006	0.0005
Pure-1#-6	0.011	0.0034	0.0008	0.0179	0.0141	0.0061	0.0003	0.0008	0.0002
Pure-1#-7	0.0123	0.0041	0.0006	0.0201	0.014	0.0062	0.0001	0.0008	0.0003
Pure-1#-8	0.0126	0.0040	0.0008	0.0203	0.0143	0.0061	0.0002	0.0007	0.0002
Pure-1#-9	0.0125	0.0039	0.0008	0.0194	0.0142	0.0064	0.0003	0.0007	0.0002
平均值	0.0121	0.0038	0.0008	0.0192	0.0141	0.0062	0.0002	0.0007	0.0003
标准偏差	0.00060	0.00019	0.00008	0.00075	0.00013	0.00012	0.00008	0.00008	0.00009
相对标准偏差	4. 991	4. 919	10.650	3.882	0.894	1.862	35. 355	11. 134	35. 355
最大值	0.0129	0.0041	0.0009	0. 0203	0.0143	0.0064	0.0003	0.0009	0.0005
最小值	0.011	0.0034	0.0006	0.0179	0.0139	0.006	0.0001	0.0006	0.0002
极差	0.0019	0.0007	0.0003	0.0024	0.0004	0.0004	0.0002	0.0003	0.0003

表 42 中铝郑州院-058#纯镁样品的多次测定

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
058#-1	0.0065	0.004	0.0005	0.0069	0.0109	0.0062	0.0001	0.0005	0.0003
058#-2	0.0068	0.0033	0.0003	0.008	0.0101	0.0063	0.0001	0.0007	0.0003
058#-3	0.0062	0.0041	0.0003	0.0069	0.0107	0.0063	0.0002	0.0006	0.0004
058#-4	0.0067	0.004	0.0004	0.0074	0.0107	0.0065	0.0001	0.0007	0.0003
058#-5	0.0074	0.0039	0.0004	0.0082	0.0107	0.0065	0.0001	0.0006	0.0003
058#-6	0.006	0.0039	0.0004	0.0071	0.011	0.0064	0.0002	0.0007	0.0005
平均值	0.0066	0.0039	0.0004	0.0074	0.0107	0.0064	0.0001	0.0006	0.0004
标准偏差	0.00045	0.00026	0.00007	0.00051	0.00029	0.00011	0.00005	0.00007	0.00008
相对标准偏差	6.832	6. 788	17. 927	6. 937	2.670	1.736	35. 355	11.769	21. 822
最大值	0.0074	0.0041	0.0005	0.0082	0.011	0.0065	0.0002	0.0007	0.0005
最小值	0.006	0.0033	0.0003	0.0069	0.0101	0.0062	0.0001	0.0005	0.0003
极差	0.0014	0.0008	0.0002	0.0013	0.0009	0.0003	0.0001	0.0002	0.0002

3.5.2 常规镁合金系列测定

常规镁合金此处指代包含铝、锌、锰、硅、铁、铜、镍元素类别,其中铝元素为除镁外的主量元素,锌含量一般低于铝含量,硅、锰作为添加元素含量低于锌,铁、铜、镍为微量元素存在,目前的常规镁合金标样有 E2600-E2616、E2631-E2635 和 G301-G305,利用铣床

加工样品,在帕纳科 PW2403 设备制作工作曲线,利用标样对标验证正确度,然后测定有化学值的镁合金样品,元素测定条件见表 43,测定结果见表 44,多次测定数据见表 45-表 50。 为减少样品本身不均匀影响测定精密度,多次测定的样品取自同一平面内紧邻的 2-3 样块,分别加工 3-4 次后分别进行 XRF 测定,XRF 测定结果和化学值吻合,多次测定的数值一致。

表 43	中铝郑州院-	- 曲 幼 私	PW2403	测完条件
<i>1</i> × 40	TH THE THE THE	'바티 쇠시 샤푸	FWZ4U3	观 足 無生

元素	分析线	计数器	晶体	电压(kV)/	谱峰角度	谱峰时间	背景角度	背景时间	PHD
				电流 (mA)	/(2 ^θ)	/ (s)	/(2 ^θ)	/ (s)	范围
A1	Kα	FPC	PET002	25/100	144. 9288	12	+2. 9550	10	20-80
Zn	Kα	SC	LiF200	50/50	41.7784	10	+0. 9422	10	11-86
Mn	Kα	FPC	LiF200	50/50	63. 0884	12	+1.1240	10	30-70
Si	Kα	FPC	PET002	25/100	108. 8848	20	+2.6218	16	20-80
Fe	Kα	FPC	LiF200	50/50	57. 5920	16	+0.7720	10	30-69
Cu	Κα	FPC	LiF200	50/50	45. 0590	12	+0. 7546	10	35-65
Ni	Κα	FPC	LiF200	50/50	48. 6970	12	+0. 7682	10	33-65

注: 锌元素属于 "低锌"范围,最大含量为 3.81%,荧光强度为 1356.72kcps,考虑到该曲线包含极低含量锌元素,该曲线在测定锌时未加滤光片,标样测定结果吻合;实际上低含量(0.0050%级别)的锌在曲线中可产生 5kcps 级别的荧光强度,曲线的锌可以加上 "A1-200 μ "的滤光片用以降低荧光强度。

表 44 中铝郑州院-常规镁合金的 XRF 测定

单位: %

1 10/1/1	170 111775075	音金的 ARP	.,,,,,	· · ·	7.: %	
Al	Zn	Mn	Si	Fe	Cu	Ni
7. 18	2.99	0.339	0.097	0.013	0.087	0.0045
7. 086	2.953	0.326	0.0982	0.0123	0.0882	0.0049
4. 37	0.25	0.33	1.22	0.022	0.103	0.0038
4. 3562	0. 248	0.3296	1.248	0.021	0.107	0.0039
8.80	0.63	0.211	0.038	0.0015	0.0071	0.0008
8. 876	0.681	0.187	0.0364	0.0013	0.0080	0.0006
8. 81	0.665	0.210				
8. 69	0.64	0.39	0.018	0.0056	0.0001	0.0003
8.940	0.676	0.324	0.0142	0.0048	0.0001	0.0002
9.03	0.655	0.41				
6. 19	0.051	0. 297	0.028	0.0016	0.0025	0.0008
6. 059	0.046	0. 273	0. 0231	0.0012	0.0028	0.0005
5. 685	3.02	0.259	0.0316	0.0013	0.0010	0.0010
5. 500	2.963	0.2374	0.0293	0.0009	0.0007	0.0008
2. 70	0.86	0.30	0.020	0.0029	0.0005	0.0007
2. 689	0.907	0. 297	0.0166	0.0034	0.0002	0.0005
***	1.61	0.91	0.018	0.0065	0.0003	0.0004
***	1.560	0.890	0.015	0.0074	0.0002	0.0003
3. 52	0. 139	0.316	0.71	0.0029	0.0001	0.0004
3. 422	0. 127	0. 293	0.694	0.0020	0.0001	0.0004
	Al 7. 18 7. 086 4. 37 4. 3562 8. 80 8. 876 8. 81 8. 69 8. 940 9. 03 6. 19 6. 059 5. 685 5. 500 2. 70 2. 689****** 3. 52	Al Zn 7. 18 2. 99 7. 086 2. 953 4. 37 0. 25 4. 3562 0. 248 8. 80 0. 63 8. 876 0. 681 8. 81 0. 665 8. 69 0. 64 8. 940 0. 676 9. 03 0. 655 6. 19 0. 051 6. 059 0. 046 5. 685 3. 02 5. 500 2. 963 2. 70 0. 86 2. 689 0. 907 *** 1. 61 *** 1. 560 3. 52 0. 139	Al Zn Mn 7. 18 2. 99 0. 339 7. 086 2. 953 0. 326 4. 37 0. 25 0. 33 4. 3562 0. 248 0. 3296 8. 80 0. 63 0. 211 8. 876 0. 681 0. 187 8. 81 0. 665 0. 210 8. 69 0. 64 0. 39 8. 940 0. 676 0. 324 9. 03 0. 655 0. 41 6. 19 0. 051 0. 297 6. 059 0. 046 0. 273 5. 685 3. 02 0. 259 5. 500 2. 963 0. 2374 2. 70 0. 86 0. 30 2. 689 0. 907 0. 297 *** 1. 61 0. 91 *** 1. 560 0. 890 3. 52 0. 139 0. 316	Al Zn Mn Si 7. 18 2. 99 0. 339 0. 097 7. 086 2. 953 0. 326 0. 0982 4. 37 0. 25 0. 33 1. 22 4. 3562 0. 248 0. 3296 1. 248 8. 80 0. 63 0. 211 0. 038 8. 876 0. 681 0. 187 0. 0364 8. 81 0. 665 0. 210 — 8. 69 0. 64 0. 39 0. 018 8. 940 0. 676 0. 324 0. 0142 9. 03 0. 655 0. 41 — 6. 19 0. 051 0. 297 0. 028 6. 059 0. 046 0. 273 0. 0231 5. 685 3. 02 0. 259 0. 0316 5. 500 2. 963 0. 2374 0. 0293 2. 70 0. 86 0. 30 0. 020 2. 689 0. 907 0. 297 0. 0166 —*** 1. 61 0. 91 0. 018	Al Zn Mn Si Fe 7. 18 2. 99 0. 339 0. 097 0. 013 7. 086 2. 953 0. 326 0. 0982 0. 0123 4. 37 0. 25 0. 33 1. 22 0. 022 4. 3562 0. 248 0. 3296 1. 248 0. 021 8. 80 0. 63 0. 211 0. 038 0. 0015 8. 876 0. 681 0. 187 0. 0364 0. 0013 8. 81 0. 665 0. 210 — — 8. 69 0. 64 0. 39 0. 018 0. 0056 8. 940 0. 676 0. 324 0. 0142 0. 0048 9. 03 0. 655 0. 41 — — 6. 19 0. 051 0. 297 0. 028 0. 0016 6. 059 0. 046 0. 273 0. 0231 0. 0012 5. 685 3. 02 0. 259 0. 0316 0. 0013 5. 500 2. 963 0. 2374 0. 0293 0. 0009 <td>Al Zn Mn Si Fe Cu 7. 18 2. 99 0. 339 0. 097 0. 013 0. 087 7. 086 2. 953 0. 326 0. 0982 0. 0123 0. 0882 4. 37 0. 25 0. 33 1. 22 0. 022 0. 103 4. 3562 0. 248 0. 3296 1. 248 0. 021 0. 107 8. 80 0. 63 0. 211 0. 038 0. 0015 0. 0071 8. 876 0. 681 0. 187 0. 0364 0. 0013 0. 0080 8. 81 0. 665 0. 210 — — — 8. 69 0. 64 0. 39 0. 018 0. 0056 0. 0001 8. 940 0. 676 0. 324 0. 0142 0. 0048 0. 0001 9. 03 0. 655 0. 41 — — — 6. 19 0. 051 0. 297 0. 028 0. 0016 0. 0025 6. 059 0. 046 0. 273 0. 0231 0. 0012 <</td>	Al Zn Mn Si Fe Cu 7. 18 2. 99 0. 339 0. 097 0. 013 0. 087 7. 086 2. 953 0. 326 0. 0982 0. 0123 0. 0882 4. 37 0. 25 0. 33 1. 22 0. 022 0. 103 4. 3562 0. 248 0. 3296 1. 248 0. 021 0. 107 8. 80 0. 63 0. 211 0. 038 0. 0015 0. 0071 8. 876 0. 681 0. 187 0. 0364 0. 0013 0. 0080 8. 81 0. 665 0. 210 — — — 8. 69 0. 64 0. 39 0. 018 0. 0056 0. 0001 8. 940 0. 676 0. 324 0. 0142 0. 0048 0. 0001 9. 03 0. 655 0. 41 — — — 6. 19 0. 051 0. 297 0. 028 0. 0016 0. 0025 6. 059 0. 046 0. 273 0. 0231 0. 0012 <

^{*} 化学 A 为 2022 年 10 月测定;

^{**} 化学值 B 为流转后 2023 年 11 月重新取样测定,"——"表示未测定

^{***:} ZM21-Z 不含主量铝元素,含量和曲线中铝元素不在一个级别水平,未测定铝。

表 45 中铝郑州院-AZ91-Z 镁合金样品的多次测定

44		1		0/	
单	.1	1	٠.	%	

样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-Z-1	8.798	0.6784	0. 1888	0.0342	0.0016	0.0084	0.0005
AZ91-Z-2	8.864	0.6841	0. 1874	0.0339	0.0015	0.0082	0.0006
AZ91-Z-3	8.838	0. 6753	0. 1868	0.0359	0.0013	0.0072	0.0005
AZ91-Z-4	8.938	0. 6879	0. 1856	0.0387	0.001	0.0081	0.0005
AZ91-Z-5	8.871	0.6719	0. 1834	0.0382	0.0009	0.0081	0.0005
AZ91-Z-6	8.946	0.6871	0. 189	0.0374	0.0012	0.0079	0.0008
平均值	8.876	0.681	0. 187	0.0364	0.0013	0.0080	0.0006
标准偏差	0.0523	0.0060	0.0019	0.0019	0.0003	0.0004	0.0001
相对标准偏差	0. 5898	0.8818	1. 0294	5. 1258	20.0000	4. 7652	19. 5096
最大值	8.946	0. 6879	0. 189	0.0387	0.0016	0.0084	0.0008
最小值	8. 798	0.6719	0. 1834	0.0339	0.0009	0.0072	0.0005
极差	0.148	0.016	0.0056	0.0048	0.0007	0.0012	0.0003
样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-B-1	9.023	0.685	0.314	0.014	0.0045	0.0001	0.0004
AZ91-B-2	9.026	0.691	0.316	0.0137	0.0043	0.0001	0.0003
AZ91-B-3	8. 944	0.675	0.336	0.015	0.0049	0.0002	0.0002
AZ91-B-4	8. 921	0.678	0. 333	0.0141	0.0048	0.0001	0.0001
AZ91-B-5	8. 9514	0.679	0.316	0.0129	0.0047	0.0001	0.0003
AZ91-B-6	8. 9213	0.675	0.313	0.0136	0.0044	0.0002	0.0003
AZ91-B-7	8.871	0.662	0. 337	0.0143	0.0054	0.0002	0.0002
AZ91-B-8	8.864	0.664	0.329	0.0156	0.0051	0.0001	0.0001
平均值	8.940	0.676	0. 324	0.0142	0.0048	0.0001	0.0002
标准偏差	0.05657	0.00909	0.00979	0.00079	0.00035	0.00005	0.0001
相对标准偏差	0.633	1.344	3. 021	5. 553	7. 269	35. 209	41. 775
最大值	9.026	0.691	0. 337	0.0156	0.0054	0.0002	0.0004
最小值	8.864	0.662	0.313	0.0129	0.0043	0.0001	0.0001
极差	0.162	0.029	0.024	0.0027	0.0011	0.0001	0.0003
表 46 中報	吕郑州院-AN	M60-Z 镁合	金样品的多	次测定	单	位: %	
样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AM60-Z-1	6.0331	0.0463	0. 2779	0.0217	0.0015	0.0029	0.0005
AM60-Z-2	6.0406	0.0468	0. 2745	0.0224	0.0013	0.0029	0.0004
AM60-Z-3	6. 0358	0.0469	0. 2749	0.0207	0.0015	0.003	0.0005
AM60-Z-4	6.0532	0.0454	0. 2724	0.0258	0.001	0.0027	0.0005
AM60-Z-5	6.099	0.0452	0.27	0.025	0.0008	0.0027	0.0003
AM60-Z-6	6. 0923	0.0457	0. 2693	0.0228	0.0009	0.0028	0.0005
平均值	6.059	0.046	0. 273	0.0231	0.0012	0.0028	0.0005
标准偏差	0.0267	0.0007	0.0030	0.0018	0.0003	0.0001	0.0001
相对标准偏差	0. 4413	1. 4336	1.0855	7. 7538	24. 0747	3.9019	16. 9725
最大值	6.099	0.0469	0. 2779	0.0258	0.0015	0.003	0.0005
最小值	6. 0331	0.0452	0. 2693	0.0207	0.0008	0.0027	0.0003

0.0017

0.0086

0.0051

0.0007

0.0003

0.0002

0.0659

极差

= 47	+ FD XR 11172 A77.00	7. 镁合金样品的多次测定	* / · · · · · · · · · · · · · · · · · ·
₹ 47	中 1行 大い かい P元 二 A んり 3 -	7. 法宣法性前的多次测定	单位: %

AZ63-Z-1	5. 4423	2.8672	0. 2382	0.0285	0.001	0.0007	0.0007
AZ63-Z-2	5. 5084	3. 0049	0. 2375	0.0277	0.0008	0.0005	0.0008
AZ63-Z-3	5. 5927	3. 0192	0. 2422	0.0277	0.0008	0.0005	0.0009
AZ63-Z-4	5. 4174	2.8603	0. 2338	0.0293	0.001	0.0009	0.001
AZ63-Z-5	5. 4533	3.006	0. 2342	0.0301	0.0009	0.0008	0.0007
AZ63-Z-6	5. 5851	3. 0231	0. 2385	0.0327	0.0008	0.0007	0.0005
平均值	5. 500	2.963	0. 2374	0.0293	0.0009	0.0007	0.0008
标准偏差	0.0686	0.0708	0.0028	0.0017	0.0001	0.0001	0.0002
相对标准偏差	1. 2474	2. 3900	1. 1927	5.8971	10. 1607	21. 4024	20. 8514
最大值	5. 5927	3. 0231	0. 2422	0.0327	0.001	0.0009	0.001
最小值	5. 4174	2.8603	0. 2338	0.0277	0.0008	0.0005	0.0005
极差	0. 1753	0. 1628	0.0084	0.005	0.0002	0.0004	0.0005
AZ63-Z-1	5. 4423	2. 8672	0. 2382	0.0285	0.001	0.0007	0.0007

表 48 中铝郑州院-AZ31-B 镁合金样品的多次测定 单位: %

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ31-B-1	2. 7156	0. 9283	0. 2974	0.0152	0.0032	0.0001	0.0005
AZ31-B-2	2. 6564	0. 9021	0. 2937	0.0157	0.0033	0.0002	0.0004
AZ31-B-3	2. 6776	0. 9054	0. 2949	0.0145	0.003	0.0001	0.0003
AZ31-B-4	2. 6798	0.9106	0. 2932	0.0168	0.0031	0.0002	0.0004
AZ31-B-5	2. 6098	0.8817	0. 288	0.0178	0.0032	0.0003	0.0003
AZ31-B-6	2.632	0.8845	0. 2889	0.0167	0.0031	0.0001	0.0005
AZ31-B-7	2. 7626	0. 9355	0.3071	0.0167	0.0039	0.0001	0.0006
AZ31-B-8	2. 6975	0. 9039	0.3012	0.0181	0.0043	0.0003	0.0006
AZ31-B-9	2. 7664	0. 9142	0.3049	0.0175	0.0038	0.0002	0.0006
平均值	2. 689	0.907	0. 297	0.0166	0.0034	0.0002	0.0005
标准偏差	0.0505	0.0167	0.0063	0.0011	0.0004	0.0001	0.0001
相对标准偏差	1.8796	1.8413	2. 1237	6. 8935	12. 4333	44. 1942	24. 7436
最大值	2.7664	0. 9355	0.3071	0.0181	0.0043	0.0003	0.0006
最小值	2.6098	0.8817	0. 288	0.0145	0.003	0.0001	0.0003
极差	0.1566	0.0538	0.0191	0.0036	0.0013	0.0002	0.0003

表 49 中铝郑州院-ZM21-Z 镁合金样品的多次测定

表 49 中铝	表 49 中铝郑州院-ZM21-Z 镁合金样品的多次测定 单位: %										
样品	Zn	Mn	Si	Fe	Cu	Ni					
ZM21-Z-1	1. 5542	0.8946	0.0139	0.0078	0.0002	0.0003					
ZM21-Z-2	1.5648	0.8989	0.0142	0.0079	0.0002	0.0002					
ZM21-Z-3	1. 557	0.899	0.0145	0.0079	0.0003	0.0002					
ZM21-Z-4	1.5572	0.8783	0.0159	0.0068	0.0002	0.0003					
ZM21-Z-5	1. 5659	0.8831	0.0169	0.0069	0.0002	0.0003					
ZM21-Z-6	1. 5579	0.8839	0.0173	0.0073	0.0002	0.0003					
平均值	1.560	0.890	0.015	0.0074	0.0002	0.0003					
标准偏差	0.0043	0.0082	0.0013	0.0005	0.0000	0.0000					
相对标准偏差	0. 2761	0.9204	8.6009	6. 1974	17. 2005	17. 6777					
最大值	1. 5659	0.899	0.0173	0.0079	0.0003	0.0003					

最小值	1. 5542	0.8783	0.0139	0.0068	0.0002	0.0002
极差	0.0117	0.0207	0.0034	0.0011	0.0001	0.0001

表 50 中铝郑州院-AS31-Z 镁合金样品的多次测定

单位:%

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AS31-Z-1	3. 4132	0.122	0. 276	0.694	0.0016	0.0001	0.0003
AS31-Z-2	3. 4031	0.122	0. 283	0.697	0.002	0.0001	0.0004
AS31-Z-3	3. 4363	0.123	0.315	0.689	0.0023	0.0001	0.0003
AS31-Z-4	3. 4192	0.13	0. 28	0.693	0.0018	0.0002	0.0003
AS31-Z-5	3. 3996	0.13	0. 286	0.701	0.0021	0.0001	0.0004
AS31-Z-6	3. 4363	0.131	0.321	0.691	0.0024	0.0001	0.0004
AS31-Z-7	3. 4528	0.129	0. 286	0.694	0.0018	0.0003	0.0004
AS31-Z-8	3.418	0.128	0. 297	0.695	0.0019	0.0001	0.0004
平均值	3. 422	0.127	0. 293	0.694	0.0020	0.0001	0.0004
标准偏差	0.0170	0.0036	0.0156	0.0034	0.0003	0.0001	0.000023
相对标准偏差	0. 4973	2. 8537	5. 3148	0. 4924	12. 6882	50. 6160	13. 3551
最大值	3. 4528	0.131	0.321	0.701	0.0024	0.0003	0.0004
最小值	3. 3996	0.122	0. 276	0.689	0.0016	0.0001	0.0003
极差	0.0532	0.009	0.045	0.012	0.0008	0.0002	0.0001

3.5.3 锌-锆镁合金系列测定

锌-锆镁合金此处指锌、锆元素为除镁之外主量元素的类别,目前的锌-锆镁合金标样有 E5111-E5113, 主编单位根据需要自己加工一套 5 个样点的锌-锆系列镁合金样品 (ZK1#-ZK5#),利用 ICP-AES 定值后作为制作工作曲线的标样,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,利用标样对标验证正确度,然后测定有化学值的镁合金样品,元素测定条件见表 51,测定结果见表 52,多次测定数据见表 53。为减少样品本身不均匀影响测定精密度,多次测定的样品取自同一平面内紧邻的 2 样块,分别加工后分别进行 XRF 测定,XRF 测定结果和化学值吻合,多次测定的数值一致。

表 51 中铝郑州院-帕纳科 PW2403 测定条件

元素	分析线	计数器	晶体	电压(kV)/	谱峰角度	谱峰时间	背景角度	背景时间	PHD
				电流 (mA)	/(2 ^θ)	/ (s)	/(2 ^θ)	/ (s)	范围
Zn	Kα	SC	LiF200	50/50	41.7822	10	+0. 8784	10	20-76
Zr	Kα	SC	LiF200	50/50	22. 4352	10	+0. 8998	10	20-80
Mn	Kα	SC	LiF200	50/50	63. 0964	12	+0. 9234	10	30-68
Cu	Kα	SC	LiF200	50/50	45. 0290	12	+0.8444	10	30-62
Ni	Kα	SC	LiF200	50/50	48. 6850	12	+0.6618	10	33-64

注:由于该系列中锌元素含量在 1%以上,其部分样品荧光强度超过 1000kcps,可能会引起部分设备产生警示信息,因此曲线的锌元素测定条件中加上 "A1-750 μ "的滤光片用以降低荧光强度,使得最高含量的锌元素的荧光强度降低至 1000kcps 以下。

表 52 中铝郑州院-锌-锆镁合金的 XRF 测定

单位:%

107 H	_	_		_	l
样品	l Zn	l Zr	l Mn	C11	l Ni
TIHH	211	21	WIII	- Cu	1,1,1

ZK3#-B 化学值	5.33	0.55	0.015	0.0001	0.0001
ZK1#-B XRF 测定值	5. 246	0. 523	0.0146	0.0001	0.0001
ZnZr1#-Z 化学值	5.05	0.38	0.018	0.0001	0.0001
ZnZr1#-Z XRF 测定值	4. 886	0.375	0.0168	0.0003	0.0001

表 53 中铝郑州院-ZnZr1#-Z 镁合金样品的多次测定

单位: %

TE: 70										
样品	Zn	Zr	Mn	Cu	Ni					
ZnZr1#-Z-1	4.845	0.374	0.0162	0.0002	0.0001					
ZnZr1#-Z-2	4.914	0.376	0.0173	0.0003	0.0001					
ZnZr1#-Z-3	4.829	0.365	0.0165	0.0004	0.0001					
ZnZr1#-Z-4	4.921	0.378	0.0174	0.0002	0.0002					
ZnZr1#-Z-5	4.856	0.376	0.0163	0.0003	0.0001					
ZnZr1#-Z-6	4.953	0.379	0.0171	0.0002	0.0001					
平均值	4.886	0.375	0.0168	0.0003	0.0001					
标准偏差	0.0453	0.0046	0.0005	0.0001	0.0000					
相对标准偏差	0.9276	1.2296	2.8753	27. 9508	31. 9438					
最大值	4.953	0.379	0.0174	0.0004	0.0002					
最小值	4.829	0.365	0.0162	0.0002	0.0001					
极差	0.124	0.014	0.0012	0.0002	0.0001					

注: ZK3#-B样品的铜和镍极低,在 0.0005%以下级别。

3.5.4 锌-铈镁合金系列测定

锌-铈镁合金此处指铈元素为除镁之外主量元素的类别,目前的锌-铈镁合金标样有 E5121-E5129,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,利用标样对标验 证正确度,元素测定条件见表 54,测定结果见表 55,多次测定数据见表 56 和表 57。XRF 测定结果和标准值吻合,多次测定的数值一致。

表 54 中铝郑州院-帕纳科 PW2403 测定条件

元素	分析线	计数器	晶体	电压(kV)/	谱峰角度	谱峰时间	背景角度	背景时间	PHD
				电流 (mA)	/(2 ^θ)	/ (s)	/(2 ⁰)	/ (s)	范围
Zn	Κα	SC	LiF200	50/50	41.7796	10	+0.8695	10	20-80
Се	L_{α}	SC	LiF200	50/50	79. 2348	16	+0.7706	10	36-66
Mn	Kα	SC	LiF200	50/50	63. 0919	12	+0. 9306	10	30-70

注:由于该系列中锌元素含量在 1%以上,其部分样品荧光强度超过 1000kcps,可能会引起部分设备产生警示信息,因此曲线的锌元素测定条件中加上 "Al-750μ"的滤光片用以降低荧光强度,使得最高含量的锌元素的荧光强度降低至 1000kcps 以下。

表 55 中铝郑州院-锌-铈镁合金的 XRF 测定

单位: %

样品	Zn	Се	Mn
E5123 标准值	3.63	1.28	0.067
帕纳科 XRF 测定值	3.55	1. 290	0.0663
ZnCe-7# 化学值	4. 47	3. 198	0.017
帕纳科 XRF 测定值	4. 363	3. 281	0.0171
ME20-# 化学值		0. 28	1.74
帕纳科 XRF 测定值		0.314	1.714

样品	Zn	Се	Mn
ZnCe-7#-1	4.372	3. 287	0.0172
ZnCe-7#-2	4.344	3. 276	0.0169
ZnCe-7#-3	4.366	3. 279	0.017
ZnCe-7#-4	4.369	3. 282	0.0171
平均值	4.363	3. 281	0.0171
标准偏差	0.0110	0.0041	0.0001
相对标准偏差	0. 2528	0.1238	0.6557
最大值	4.372	3. 287	0.0172
最小值	4.344	3. 276	0.0169
极差	0.028	0.011	0.0003

表 57 中铝郑州院-ME20#镁合金样品的多次测定

单位: %

样品	Zn	Се	Mn
ME20#-1		0.312	1.702
ME20#-2		0.313	1.713
ME20#-3		0.321	1.732
ME20#-4		0.315	1.732
ME20#-5		0.312	1.709
ME20#-6		0.315	1.708
ME20#-7		0.311	1.706
ME20#-8		0.314	1.711
平均值		0.314	1.714
标准偏差		0.0029	0.0108
相对标准偏差		0.9341	0.6279
最大值		0. 321	1.732
最小值		0.311	1.702
极差		0.01	0.03

注: ME20#为镁锰铈合金,未添加锌元素。

3.5.5 锌-钇-铜-铝镁合金系列

锌-钇-铜-铝镁合金此处指锌、钇、铜、铝元素为除镁之外主量元素的类别,目前的锌-钇-铜-铝镁合金标样有 E9141-E9146、E9151-E9159,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线(程序 1),利用标样对标验证正确度,元素测定条件见表 58,测定结果见表 59,多次测定数据见表 60、表 61、表 62。XRF 测定结果和标准值、化学值吻合,多次测定的数值一致。

利用 E9141-E9146、 E5131-E5135、E9156 标样,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线(程序 2),测定 ZA73-M-Z 和 ZA53-D-Z,程序 1 和程序 2 数值相吻合一致,结果见表 61 和表 62。

表 58 中铝郑州院-帕纳科 PW2403 测定条件

元素	分析线	计数器	晶体	电压(kV)/	谱峰角度	谱峰时间	背景角度	背景时间	PHD
				电流 (mA)	/(2 ^θ)	/ (s)	/(2 ⁰)	/ (s)	范围
Zn	Kα	SC	LiF200	50/50	41. 7818	10	+1. 1236	10	12-79
Y	Кв	SC	LiF200	50/50	21.0900	10	+0.9710	10	26-75
Cu	Kα	SC	LiF200	50/50	45. 0414	10	+0.8162	10	37-63
A1	Kα	FPC	PE002	25/100	144. 9816	20	+0.9710	10	20-80
Mn	Kα	SC	LiF200	50/50	63. 0832	10	+1. 2954	10	30-69

注 1: 由于该系列中锌元素含量在 1%以上,其部分样品荧光强度超过 1000kcps,可能会引起部分设备产生警示信息,因此曲线的锌元素测定条件中加上 "Al-750 μ "的滤光片用以降低荧光强度,使得最高含量的锌元素的荧光强度降低至 1000kcps 以下。注 2: 钇元素的 K_a 荧光产额较高,4.5%含量的荧光强度达到 3600kcps,如使用 Al-750 μ m 滤光片,其强度仍然达到 1500kcps,但如果使用 Brass-300 μ m 滤光片,其荧光强度降低至约 24kcps,对于更低含量的钇元素不利,因此钇元素可以采用 K_a 谱线作为测量线,4.5%含量的钇元素其荧光强度可以降低至比较合适的 750kcps 范围。

表 59 中铝郑州院-锌-钇-铜-铝镁合金的 XRF 测定

单位: %

样品	Zn	Y	Cu	A1	Mn
E9152 标准值	2. 28	3. 13	3. 46		0. 952
帕纳科 XRF 测定值	2. 270	3. 077	3. 59		0.906
E9142 标准值	5. 82	0.666		3. 84	
帕纳科 XRF 测定值	5. 902	0.701		3, 838	
ZnY-3-B 化学值	4.03	0.85	2.96		0.42
帕纳科 XRF 测定值	3. 936	0.879	2. 932		0.415
ZA73-M-Z 化学值	7. 37			3. 05	
帕纳科程序 1-XRF 测定值	7. 388			2. 876	
帕纳科程序 2-XRF 测定值	7. 306			2. 902	
ZA53-D-Z 化学值	5. 606			2.64	
帕纳科程序 1-XRF 测定值	5. 409			2. 440	
帕纳科程序 2-XRF 测定值	5. 344			2. 458	

注: "——"是由于该样品中没有此主量元素,主要是低于工作曲线范围的含量,因此未测定。

表 60 中铝郑州院-ZnY-3-B 镁合金样品的多次测定

单位:%

样品	Zn	Y	Cu	Al	Mn			
ZnY-3-B-1	3. 934	0.876	2. 935		0.415			
ZnY-3-B-2	3. 916	0.878	2. 921		0.413			
ZnY-3-B-3	3. 925	0.879	2. 938		0.416			
ZnY-3-B-4	3. 969	0.883	2. 935		0.417			
平均值	3. 936	0.879	2. 932		0.415			
标准偏差	0.0201	0.0025	0.0066		0.0015			
相对标准偏差	0.5103	0. 2900	0. 2254		0. 3562			
最大值	3. 969	0.883	2. 938		0.417			
最小值	3. 916	0.876	2. 921		0.413			
极差	0.053	0.007	0.017		0.004			

注: "一一"是由于该样品中没有此主量元素,或含量大幅低于工作曲线范围的含量,因此未测定。

表 61 中铝郑州院-ZA-73M-Z 镁合金样品的多次测定

单位: %

样品	Zn	Y	Cu	A1	Mn

ZA-73M-Z-1 (程序 1)	7. 376			2. 876	
ZA-73M-Z-2 (程序 1)	7.38			2. 886	——
ZA-73M-Z-3 (程序 1)	7. 404			2.865	
ZA-73M-Z-4 (程序 1)	7. 378			2.86	
ZA-73M-Z-5 (程序 1)	7.39			2.896	
ZA-73M-Z-6 (程序 1)	7. 397		——	2.873	——
平均值	7. 388			2.876	——
标准偏差	0.0104			0.0122	——
相对标准偏差	0.1406			0. 4225	——
最大值	7. 404			2.896	——
最小值	7. 376			2.86	——
极差	0.028			0.036	——
样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1 (程序 2)	7. 3			2.908	
ZA-73M-Z-2 (程序 2)	7. 303	——		2. 881	——
ZA-73M-Z-3 (程序 2)	7. 285			2. 887	——
ZA-73M-Z-4 (程序 2)	7. 323			2. 919	——
ZA-73M-Z-5 (程序 2)	7. 319			2. 907	
ZA-73M-Z-6 (程序 2)	7. 306			2. 909	
平均值	7. 306			2. 902	——
标准偏差	0.0125			0.0133	——
相对标准偏差	0. 1717			0. 4591	
最大值	7. 323			2. 919	
最小值	7. 285			2. 881	
极差	0.038			0.038	

注: "一一"是由于该样品中没有此主量元素,或含量大幅低于工作曲线范围的含量,因此未测定。

表 62 中铝郑州院-ZA-53D-Z 镁合金样品的多次测定 单位: %

****	7.1176 2.1 002 2	94112211111111		—	
样品	Zn	Y	Cu	Al	Mn
ZA-53D-Z-1 (程序 1)	5. 45			2.44	
ZA-53D-Z-2 (程序 1)	5. 298			2. 427	
ZA-53D-Z-3 (程序 1)	5. 431			2. 415	
ZA-53D-Z-4 (程序 1)	5. 459			2. 465	
ZA-53D-Z-5 (程序 1)	5. 363		——	2. 457	
ZA-53D-Z-6 (程序 1)	5. 453			2. 435	
平均值	5. 409			2. 440	
标准偏差	0.0592			0.0170	
相对标准偏差	1. 0947			0.6965	
最大值	5. 459			2. 465	
最小值	5. 298			2. 415	
极差	0.161			0.05	
样品	Zn	Y	Cu	Al	Mn
ZA-53D-Z-1 (程序 2)	5. 411			2. 484	

ZA-53D-Z-2 (程序 2)	5. 308			2. 447	
ZA-53D-Z-3 (程序 2)	5. 297	——	——	2.43	——
ZA-53D-Z-4 (程序 2)	5. 429			2. 496	——
ZA-53D-Z-5 (程序 2)	5. 315			2. 452	——
ZA-53D-Z-6 (程序 2)	5. 302			2. 437	——
平均值	5. 344			2. 458	——
标准偏差	0.0545			0.0242	——
相对标准偏差	1.0200			0. 9829	——
最大值	5. 429			2. 496	——
最小值	5. 297			2.43	
极差	0.132			0.066	

3.5.6 镁-钕镁合金系列

镁-钕镁合金此处指含钕元素的镁合金类别,目前的镁-钕镁合金标样有 E6331-E6336,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,利用标样对标验证正确度,元素测定条件见表 63,测定结果见表 64,多次测定数据见表 65。

表 63 中铝郑州院-帕纳科 PW2403 测定条件

	表 03 中铂郑州阮-阳纳科 FW2403 测定余件										
元素	分析线	计数器	晶体	电压(kV)/	谱峰角度	谱峰时间	背景角度	背景时间	PHD		
				电流 (mA)	/(2 ^θ)	/ (s)	/(2 0)	/ (s)	范围		
Nd	Lα	SC	LiF200	50/50	72. 3008	40	+1.5172	20	35-70		
			表 64	镁钕镁合金的	XRF 测定	单位	Ž: %				
	样品						Nd				
	E6334 标准值						2.60				
	帕纳科 XRF 测定值						2.628				
	Nd-B-C 化学值						2. 25				
		帕纳科 XRF	测定值				2. 171				
	表 65 中铝郑州院-Nd-B-Cu 镁合					测定	单位: %	1			
		样品			Nd						
		Nd-B-C	-1		2. 174						
		Nd-B-C	-2		2. 163						
		Nd-B-C	-3		2. 171						
		Nd-B-C	-4		2.17						
		Nd-B-C	-5		2. 176						
		Nd-B-C	-6				2. 173				
		平均值	1		2. 171						
		标准偏					0.0041				
		相对标准			0.1907						
	最大值					2. 176					
	最小值					2. 163					
		极差			0.013						
					l .						

3.5.7 镁锶合金系列

镁-锶镁合金此处指含锶元素的镁合金类别,目前的镁-锶镁合金标样有 E6321-E6324,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,利用标样对标验证正确度,元素测定条件见表 66,测定结果见表 67。XRF 测定结果和标准值吻合,由于缺少相应实际样品,未进行实际样品的多次测定。

表 66 中铝郑州院-帕纳科 PW2403 测定条件

元素	分析线	计数器	晶体	电压(kV)/	谱峰角度	谱峰时间	背景角度	背景时间	PHD
				电流 (mA)	/(2 0)	/ (s)	/(2 ^θ)	/ (s)	范围
Sr	Kα	SC	LiF200	50/50	25. 0390	50	+0. 8746	20	30-70

表 67 中铝郑州院-镁锶镁合金的 XRF 测定

单位: %

样品	Sr
E6322 标准值	0.016
帕纳科 XRF 测定值	0. 0162

3.5.8 钆-钇-锌-锆镁合金系列

钆-钇-锌-锆镁合金此处指钆、钇、锌、锆元素为除镁之外主量元素的类别,目前没有相关的钆-钇-锌-锆镁合金标样,轻研合金加工的钆-钇-锌-锆系列镁合金内控样品,利用ICP-AES 定值后作为制作工作曲线的标样,利用铣床加工样品,在帕纳科 PW2403 设备制作工作曲线,利用 GdY63-B 标样对标验证正确度,元素测定条件见表 68,测定结果见表 69,多次测定数据见表 70-表 73。XRF 测定结果和标准值、化学值吻合,多次测定的数值一致。

表 68 中铝郑州院-帕纳科 PW2403 测定条件

元素	分析线	计数器	晶体	准直器	电压(kV)/	谱峰角度	谱峰时间	背景角度	背景时间	PHD
					电流 (mA)	/(2 ^θ)	/ (s)	/(2 0)	/ (s)	范围
Zn	Kα	SC	LiF200	300 µ m	50/50	41. 7834	10	+0.9372	10	12-80
Gd	Lα	SC	LiF200	300 µ m	50/50	61. 2234	10	-1.5092	10	33-68
Y	Kα	SC	LiF200	150 µ m	50/50	23. 7006	10	+0.7706	10	36-66
Zr	Kα	SC	LiF200	300 µ m	50/50	22. 4460	10	-0.6492	10	20-79

注 1: 由于该系列中锌元素含量在 3%以下,加上 "Al-200 μ " 滤光片就可以将其强度降低到 500kcps 以下;

注 2: 由于钆元素 Lα右侧有锆的二次谱线,选用左侧作为背景;

注 3: 钇元素的 K_a 荧光产额较高,此处使用 150 μm 的准直器,可降低一半的强度;

注 4: 锆元素的 K_{α} 处于 Y 元素 K_{β} 和 K_{α} 之间, K_{α} 和强度极高, K_{β} 和强度较低,为避免可能的高强度抬升背景强度,选择在锆的 K_{α} 谱线左侧作为比背景。

表 69 中铝郑州院-钆-钇-锌-锆镁合金的 XRF 测定

单位:%

样品	Gd	Y	Zn	Zr
GdY63-B 化学值	5. 49	3. 16		1.04
帕纳科 XRF 测定值	5. 536	3. 186		1. 111
GdY93-Z 化学值	8. 85	2.85	1.83	0.46
帕纳科 XRF 测定值	9.032	2.805	1.871	0. 458
GdY2466-B 化学值	5. 75	0.94	0.050	0.026
帕纳科 XRF 测定值	5.883	0.992	0.057	0.027

GdY2467-B 化学值	6.036	1.365	1.08	0.046
帕纳科 XRF 测定值	5.963	1.354	1.020	0.0447

表 70 中铝郑州院-GdY63-B 镁合金样品的多次测定

单位: %

样品	Gd	Y	Zn	Zr
GdY63-B-1	5. 523	3.17		1. 104
GdY63-B-2	5. 526	3. 195		1. 106
GdY63-B-3	5. 565	3. 185		1. 115
GdY63-B-4	5.546	3. 214		1. 115
GdY63-B-5	5. 537	3. 165		1. 111
GdY63-B-6	5.516	3. 184		1. 114
平均值	5.536	3. 186		1. 111
标准偏差	0.0164	0. 0162		0.0044
相对标准偏差	0. 2959	0. 5071		0.3938
最大值	5. 565	3. 214		1. 115
最小值	5.516	3. 165		1.104
极差	0.049	0.049		0. 011

注: GdY63-B由2块平行样,表面加工3次产生6组数据,该样品锌元素的化学值为0.0048%,远低于其余样品的锌含量,未 测定。

表 71 中铝郑州院-GdY93-Z 镁合金样品的多次测定 单位: %

样品	Gd	Y	Zn	Zr
GdY93-Z-1	9.024	2.806	1.854	0.448
GdY93-Z-2	8.911	2.754	1.884	0.457
GdY93-Z-3	9.033	2.811	1.838	0.451
GdY93-Z-4	9.052	2.829	1.859	0.451
GdY93-Z-5	8.954	2.765	1.893	0.462
GdY93-Z-6	9.076	2.839	1.861	0.458
GdY93-Z-7	9.063	2.819	1.851	0.456
GdY93-Z-8	8.966	2.755	1.890	0.468
GdY93-Z-9	9.078	2.823	1.874	0.455
平均值	9.032	2.805	1.871	0.458
标准偏差	0.0514	0.0325	0.0158	0.0054
相对标准偏差	0.5691	1.1600	0.8442	1. 1861
最大值	9.078	2.839	1.893	0.468
最小值	8.954	2.755	1.851	0.451
极差	0.124	0.084	0.042	0.017

注: GdY93-Z由3块平行样,表面加工两次产生9组数据。

表 72 中铝郑州院-GY2466-B 镁合金样品的多次测定 单位: %

样品	Gd	Y	Zn	Zr
GdY2466-B-1	5.859	0.985	0.0563	0. 0263
GdY2466-B-2	5. 882	0.993	0.0565	0.0269

GdY2466-B-3	5. 886	0.991	0. 0569	0.0268
GdY2466-B-4	5. 906	0.999	0.0571	0.0272
GdY2466-B-5	5.868	0.990	0.0566	0.0264
GdY2466-B-6	5. 896	0.994	0.0570	0.0270
平均值	5.883	0.992	0.057	0.027
标准偏差	0.0159	0.0042	0.0003	0.0003
相对标准偏差	0. 2696	0. 4277	0. 5054	1. 1945
最大值	5. 906	0.999	0.0571	0.0272
最小值	5. 859	0.985	0.0563	0.0263
极差	0.047	0.014	0.0008	0.0009

表 73 中铝郑州院-GY2467-B 镁合金样品的多次测定

单位: %

样品	Gd	Y	Zn	Zr
GdY2467-B-1	5. 946	1.352	1.018	0.0448
GdY2467-B-2	5. 979	1.356	1.022	0.0446
平均值	5. 963	1.354	1.020	0. 0447
极差	0.033	0.004	0.004	0.0002

3.6 实验室对比数据

2023年1月主编单位陆续将镁及镁合金标准样品、内控样品邮寄到各个单位进行流转测定,测定单位包括空空导弹研究院、国家镁及镁合金产品质量监督检验中心、国标(北京)检验认证有限公司、昆明冶金研究院有限公司、上海交通大学。

3.6.1 纯镁系列比对

纯镁镁合金程序测定未知样品包含 pure-1(3 块,99.5%牌号)、058#(2 块。99.8%牌号),各复验单位测定结果见表 74-表 78,各验证单位测定数据汇总见表 79、表 80,纯镁的各复验单位的实验室内极差数据汇总见表 81、表 82。

表 74 导弹院-纯镁样品的多次测定

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
Pure-1#-1	0.0130	0.0040	0.0001	0. 0196	0.0138	0.0062	0.0001	0.0001	0.0001
Pure-1#-2	0.0129	0.0040	0.0001	0. 0197	0.0137	0.0063	0.0001	0.0001	0.0001
Pure-1#-3	0.0132	0.0039	0.0001	0. 0201	0.0140	0.0061	0.0001	0.0001	0.0001
Pure-1#-4	0.0131	0.0039	0.0001	0. 0195	0.0138	0.0062	0. 0001	0.0001	0.0001
Pure-1#-5	0.0151	0.0041	0.0001	0.0215	0.0140	0.0063	0.0001	0.0001	0.0001
Pure-1#-6	0.0150	0.0041	0.0001	0.0215	0.0139	0.0062	0. 0001	0.0001	0.0001
Pure-1#-7	0.0152	0.0041	0.0001	0. 0202	0.0138	0.0062	0. 0001	0.0001	0.0001
Pure-1#-8	0.0129	0.0039	0.0001	0.0200	0.0140	0.0061	0.0001	0.0001	0.0001
Pure-1#-9	0.0134	0.0036	0.0001	0. 0202	0.0140	0.0061	0. 0001	0.0001	0.0001
平均值	0.0138	0.0040	0.0001	0. 0203	0.0139	0.0062	0. 0001	0.0001	0.0001
标准偏差	0.00102	0.000159	/	0.000750	0.000117	0.0000782	/	/	/

相对标准偏差	7. 424	4.019	/	3.704	0.840	1.263	/	/	/
最大值	0.0152	0.0041	/	0.0215	0.0140	0.0063	/	/	/
最小值	0.0129	0.0036	/	0.0195	0.0137	0.0061	/	/	/
极差	0.0023	0.0005	/	0.0020	0.0003	0.0002	/	/	/
样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
058#-1	0.0061	0.0040	/	0.0083	0.0105	0.0061	/	0.0001	0.0001
058#-2	0.0062	0.0031	/	0.0099	0.0081	0.0060	/	0.0001	0.0001
058#-3	0.0062	0.0039	/	0.0084	0.0106	0.0061	/	0.0001	0.0001
058#-4	0.0060	0.0040	/	0.0094	0.0083	0.0060	/	0.0001	0.0001
058#-5	0.0060	0.0038	/	0.0085	0.0090	0.0062	/	0.0001	0.0001
058#-6	0.0061	0.0030	/	0.0094	0.0094	0.0060	/	0.0001	0.0001
平均值	0.0061	0.0036	/	0.0090	0.0093	0.0061	/	0.0001	0.0001
标准偏差	0. 0000894	0.000459	/	0.000668	0.00106	0.0000816	/	/	/
相对标准偏差	1. 466	12. 633	/	7. 422	11.398	1.338	/	/	/
最大值	0.0062	0.0040	/	0.0099	0.0106	0.0062	/	/	/
最小值	0.0060	0.0030	/	0.0083	0.0081	0.0060	/	/	/
极差	0.0002	0.0010	/	0.0016	0.0025	0.0002	/	/	/

表 75 国家镁中心-纯镁样品的多次测定

单位: %

	衣 /3	国家铁甲	心-纯铁件前	1的多次测定	Ē	毕位: %			
样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
Pure#-1-1	0.0111	0.0032	0.0006	0.0198	0.0136	0.0050	0.0002	0.0004	0.0001
Pure#-1-2	0.0118	0.0036	0.0008	0.0183	0.0124	0.0051	0.0002	0.0006	0.0003
Pure#-1-3	0.0112	0.0035	0.0006	0.0199	0.0139	0.0048	0.0003	0.0008	0.0001
Pure#-2-1	0.0116	0.0031	0.0007	0.0195	0.0142	0.0062	0.0002	0.0007	0.0002
Pure#-2-2	0.0102	0.0035	0.0006	0.0185	0.0125	0.0054	0.0002	0.0004	0.0003
Pure#-2-3	0.0117	0.0038	0.0008	0.0185	0.0129	0.0049	0.0003	0.0006	0.0003
Pure#-3-1	0.0122	0.0041	0.0008	0.0172	0.0138	0.0059	0.0003	0.0007	0.0002
Pure#-3-2	0.0122	0.0031	0.0009	0.0174	0.0124	0.0064	0.0002	0.0005	0.0003
Pure#-3-3	0.0114	0.0037	0.0008	0.0182	0.0136	0.0058	0.0003	0.0006	0.0002
平均值	0.0115	0.0035	0.0007	0.0186	0.0133	0.0055	0.0002	0.0006	0.0002
标准偏差	0.00062	0.00034	0.00011	0.00098	0.00071	0.00059	0.00005	0.00014	0.00008
相对标准偏差	5. 3910	9. 5999	15. 2459	5. 2464	5. 3359	10. 7949	21. 5610	23. 1661	37. 5000
最大值	0.0122	0.0041	0.0009	0.0199	0.0142	0.0064	0.0003	0.0008	0.0003
最小值	0.0102	0.0031	0.0006	0.0172	0.0124	0.0048	0.0002	0.0004	0.0001
极差	0.002	0.001	0.0003	0.0027	0.0018	0.0016	0.0001	0.0004	0.0002
样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
058#-1	0.0056	0.0031	0.0003	0.0071	0.0114	0.0064	0.0001	0.0006	0.0002
058#-2	0.0068	0.0037	0.0005	0.0078	0.0103	0.0065	0.0001	0.0007	0.0003
058#-3	0.0052	0.0039	0.0003	0.0065	0.0092	0.0058	0.0002	0.0006	0.0001
058#-4	0.0058	0.0041	0.0003	0.0061	0.0098	0.0054	0.0002	0.0007	0.0001
058#-5	0.0062	0.0043	0.0002	0.0081	0.0129	0.0062	0.0002	0.0006	0.0001
058#-6	0.0069	0.0048	0.0003	0.0069	0.0095	0.0069	0.0001	0.0006	0.0001
平均值	0.0061	0.0040	0.0003	0.0071	0.0105	0.0062	0.0002	0.0006	0.0002

标准偏差	0.00068	0.00057	0.00010	0.00076	0.00140	0.00053	0.00005	0.00005	0.00008
相对标准偏差	11. 1207	14. 4142	31. 0482	10. 7300	13. 3043	8. 5954	36. 5148	8. 1536	55. 7773
最大值	0.0069	0.0048	0.0005	0.0081	0.0129	0.0069	0.0002	0.0007	0.0003
最小值	0.0052	0.0031	0.0002	0.0061	0.0092	0.0054	0.0001	0.0006	0.0001
极差	0.0017	0.0017	0.0003	0.002	0.0037	0.0015	0.0001	0.0001	0.0002
	表 76	国标北京	 京-纯镁样品	 的多次测定	<u> </u>	单位: %			
样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
Pure-1#-1	0.0172	0.0030	0.00075	0.0183	0.0138	0.0062	0.0001	0.00076	0.00035
Pure-1#-2	0.0166	0.0032	0.00063	0.0172	0.0138	0.0062	0.0001	0.00063	0.00032
Pure-1#-3	0.0170	0.0031	0.00068	0.0176	0.0138	0.0063	0.0001	0.00077	0.00035
Pure-1#-4	0.0122	0.0031	0.00070	0.0186	0.0142	0.0063	0.0001	0.00056	0.00035
Pure-1#-5	0.0120	0.0031	0.00076	0.0184	0.0140	0.0063	0.0001	0.00050	0.00032
Pure-1#-6	0.0124	0.0031	0.00072	0.0184	0.0141	0.0063	0.0001	0.00059	0.00034
Pure-1#-7	0.0138	0.0031	0.00059	0.0188	0.0137	0.0062	0.0001	0.00076	0.00042
Pure-1#-8	0.0138	0.0032	0.00065	0.0194	0.0141	0.0061	0.0002	0.00076	0.00023
Pure-1#-9	0.0139	0.0032	0.00061	0.0190	0.0138	0.0061	0.0001	0.00076	0.00035
平均值	0.0143	0.0031	0.00060	0.0184	0.0139	0.0062	0.0001	0.00070	0.00030
标准偏差	0.0021	0.0001	0.00020	0.0007	0.0002	0.0001	0.0000	0.0001	0.0000
相对标准偏差	14.59	2.14	34.78	3.67	1.28	1.34	30.00	15.76	14.70
最大值	0.0172	0.0032	0.00076	0.0194	0.0142	0.0063	0.0002	0.00077	0.00042
最小值	0.012	0.003	0.000068	0.0172	0.0137	0.0061	0.0001	0.0005	0.00023
极差	0.0052	0.0002	0.00069	0.0022	0.0005	0.0002	0.0001	0.00027	0.00019
样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
058#-1	0.0064	0.0035	0.0004	0.0058	0.0108	0.0062	0.00001	0.0005	0.0004
058#-2	0.0062	0.0035	0.0005	0.0058	0.0107	0.0063	0.00001	0.0006	0.0003
058#-3	0.0061	0.0034	0.0005	0.0057	0.0105	0.0063	0.00001	0.0006	0.0004
058#-4	0.0055	0.0027	0.0004	0.0070	0.0081	0.0062	0.00001	0.0007	0.0003
058#-5	0.0057	0.0025	0.0005	0.0070	0.0085	0.0062	0.00001	0.0006	0.0004
058#-6	0.0057	0.0026	0.0004	0.0073	0.0080	0.0063	0.00002	0.0006	0.0004
平均值	0.0059	0.0030	0.0004	0.0064	0.0094	0.0063	0.00001	0.0006	0.0004
标准偏差	0.0004	0.0005	0.0000	0.0007	0.0014	0.00005	0.00000	0.00006	0.00004
相对标准偏差	5.90	15.83	9.30	11.49	14.47	0.88	34.99	9.78	11.04
最大值	0.0064	0.0035	0.0005	0.0073	0.0108	0.0063	0.00002	0.0007	0.0004
最小值	0.0055	0.0025	0.0004	0.0057	0.008	0.0062	0.00001	0.0005	0.0003
极差	0.0009	0.001	0.0001	0.0016	0.0028	0.0001	0.00001	0.0002	0.0001
	表 77	昆明冶金	院-纯镁样;	品的多次测	. 定	单位:	%		
样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
Pure-1#-1	0.01292	0.00359	0.00069	0.02213	0. 01398	0.0063	/	0.00074	0.0007
Pure-1#-2	0.01266	0.00366	0.0005	0.02088	0. 01397	0.00609	/	0.0008	0.00043
Pure-1#-3	0.01313	0.00366	0.0005	0.02201	0. 01407	0.00605	/	0.00105	0.00051
							,		

0.02476

0.02213

0.01414

0.01404

0.00614

0.00615

0.00068

0.00079

0.00046

0.00055

Pure-1#-4

Pure-1#-5

0.01518

0.0129

0.00367

0.00365

0.00066

0.0005

Pure-1#-6	0.01259	0.0035	0.00047	0.02113	0.01411	0.00618	/	0.0008	0.00053
Pure-1#-7	0.01381	0.00367	0.00062	0.0231	0. 01407	0.00633	/	0.00075	0.00066
Pure-1#-8	0.01252	0.00355	0.00058	0.02398	0.01421	0.00618	/	0.00103	0.00043
Pure-1#-9	0.01344	0.00366	0.00058	0.0221	0. 01427	0.00617	/	0.00065	0.00032
平均值	0.0132	0.0036	0.0006	0.0225	0.0141	0.0062	/	0.0008	0.0005
最大值	0.01518	0.00367	0.00069	0.02476	0.01427	0.00633	/	0.00105	0.0007
最小值	0.01252	0.0035	0.00047	0.02088	0.01397	0.00605	/	0.00065	0.00032
极差	0.00266	0.00017	0.00022	0.00388	0.0003	0.00028	/	0.0004	0.00038
样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
058#-1	0.00696	0.00377	0.00033	0.01019	0.01077	0.00619	0.00008	0.00077	0.00056
058#-2	0.00649	0.00319	0.00036	0.01053	0.00826	0.00625	0.00013	0.00102	0.00058
058#-3	0.00686	0.0036	0.00038	0.01049	0.00869	0.00622	0.00013	0.00099	0.00055
058#-4	0.00691	0.00337	0.00032	0.01031	0.01012	0.00624	0.00009	0.00077	0.00057
058#-5	0.00676	0.00327	0.00035	0.01026	0.0088	0.00621	0.00008	0.00096	0.00055
058#-6	0.00692	0.00358	0.00037	0.01039	0.00934	0.00619	0.00012	0.00097	0.00052
平均值	0.00682	0.00346	0.00035	0.01036	0.00933	0.00622	0.00011	0.00091	0.00056
标准偏差	0.00017	0.00022	0.00002	0.00013	0.00095	0.00003	0.00002	0.00011	0.00002
相对标准偏差	2.49	6.36	5.71	1.25	10.18	0.48	18.18	12.09	3.57
最大值	0.00696	0.00377	0.00038	0.01053	0.01077	0.00625	0.00013	0.00102	0.00058
最小值	0.00649	0.00319	0.00032	0.01019	0.00826	0.00619	0.00008	0.00077	0.00052
极差	0.00047	0.00058	0.00006	0.00034	0.00251	0.00006	0.00005	0.00025	0.00006

						1				
表 78 上海交大-纯镁样品的多次测定						单位:	单位: %			
样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti	
Pure-1#	0.0128	0.0039	0.0005	0.0219	0.0140	0.0064	0.0001	0.0008	0.0005	
Pure-2#	0.0139	0.0036	0.0005	0.0215	0.0139	0.0064	0.0001	0.0006	0.0001	
Pure-3#	0.0134	0.0035	0.0007	0.0215	0.0139	0.0063	0.0001	0.0008	0.0001	
Pure-1#-2	0.0155	0.0034	0.0006	0.0220	0.0139	0.0066	0.0001	0.0008	0.0001	
Pure-2#-2	0.0147	0.0037	0.0005	0. 0241	0.0139	0.0063	0.0001	0.0005	0.0005	
Pure-3#-2	0.0150	0.0035	0.0007	0. 0224	0.0140	0.0063	0.0001	0.0009	0.0001	
Pure 1#-3	0.0142	0.0040	0.0006	0.0220	0.0142	0.0064	0.0001	0.0010	0.0001	
Pure 2#-3	0.0143	0.0039	0.0005	0. 0228	0.0139	0.0063	0.0001	0.0001	0.0001	
Pure 3#-3	0.0142	0.0042	0.0007	0. 0220	0.0141	0.0065	0.0001	0.0008	0.0001	
平均值	0.0142	0.0037	0.0006	0.0222	0.0140	0.0064	0.0001	0.0007	0.0002	
标准偏差	0.0008	0.0003	0.0001	0.0008	0.0001	0.0001	0.0000	0.0003	0.0002	
相对标准偏差	6	7.2	14	4	0.8	1.6	0	38	93	
最大值	0.0155	0.0042	0.0007	0.0241	0.0142	0.0066	0.0001	0.0010	0.0005	
最小值	0.0128	0.0034	0.0005	0.0215	0.0139	0.0063	0.0001	0.0001	0.0001	
极差	0.0027	0.0008	0.0002	0.0026	0.0003	0.0003	0.0000	0.0009	0.0004	
样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti	
058-1#-1	0.0069	0.0039	0.0001	0.0083	0.0105	0.0062	0.0001	0.0006	0.0006	
058-2#-1	0.0082	0.0035	0.0005	0.0121	0.0082	0.0064	0.0001	0.0007	0.0006	

058-1#-2	0.0067	0.0038	0.0001	0.0082	0.0107	0.0062	0.0001	0.0007	0.0006
058-2#-2	0.0077	0.0033	0.0001	0.0123	0.0083	0.0064	0.0001	0.0007	0.0006
058-1#-3	0.0068	0.0038	0.0001	0.0083	0.0106	0.0062	0.0001	0.0006	0.0001
058-2#-3	0.0080	0.0036	0.0001	0.0122	0.0083	0.0063	0.0001	0.0007	0.0001
平均值	0.0074	0.0037	0.0002	0.0102	0.0094	0.0063	0.0001	0.0007	0.0001
标准偏差	0.0007	0.0002	0.0002	0.0022	0.0013	0.0001	0.0000	0.0001	0.0003
相对标准偏差	9	6.2	98	21	14	1.6	0	7.7	253
最大值	0.0082	0.0039	0.0005	0.0123	0.0107	0.0064	0.0001	0.0007	0.0006
最小值	0.0067	0.0033	0.0001	0.0082	0.0082	0.0062	0.0001	0.0006	0.0001
极差	0.0015	0.0006	0.0004	0.0041	0.0025	0.0002	0.0000	0.0001	0.0005

表 79 纯镁 Pure-XRF 测定汇总

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
Pure-1# 化学值	0.0108	0.0033	0.0007	0.0191	0.0141	0.0063	0.0002	0.0011	0.0004
中铝郑州院	0.0121	0.0038	0.0008	0.0192	0.0141	0.0062	0.0002	0.0007	0.0003
导弹院	0.0138	0.0040	0.0001	0. 0203	0.0139	0.0062	0.0001	0.0001	0.0001
国家镁中心	0.0115	0.0035	0.0007	0.0186	0.0133	0.0055	0.0002	0.0006	0.0002
国标北京	0.0143	0.0031	0.00060	0.0184	0.0139	0.0062	0.0001	0.00070	0.00030
昆明冶金院	0.0132	0.0036	0.0006	0.0225	0.0141	0.0062	/	0.0008	0.0005
上海交大	0.0142	0.0037	0.0006	0. 0222	0.0140	0.0064	0.0001	0.0007	0.0002
平均值	0.0132	0.0036	0.0006	0.0202	0.0139	0.0061	0.0001	0.0006	0.0003
最大值	0.0143	0.004	0.0008	0.0225	0.0141	0.0064	0.0002	0.0008	0.0005
最小值	0.0115	0.0031	0.0001	0.0184	0.0133	0.0055	0.0001	0.0001	0.0001
极差	0.0028	0.0009	0.0007	0.0041	0.0008	0.0009	0.0001	0.0007	0.0004

表 80 纯镁 058#-XRF 测定汇总

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
058# 化学值	0.0048	0.0032	0.0004	0.0078	0.0098	0.0057	0.0003	0.0006	0.0003
中铝郑州院	0.0066	0.0039	0.0004	0.0074	0.0107	0.0064	0.0001	0.0006	0.0004
导弹院	0.0061	0.0036	/	0.0090	0.0093	0.0061	/	0.0001	0.0001
国家镁中心	0.0061	0.0040	0.0003	0.0071	0.0105	0.0062	0.0002	0.0006	0.0002
国标北京	0.0059	0.0030	0.0004	0.0064	0.0094	0.0063	0.00001	0.0006	0.0004
昆明冶金院	0.00682	0.00346	0.00035	0.01036	0.00933	0.00622	0.00011	0.00091	0.00056
上海交大	0.0074	0.0037	0.0002	0.0102	0.0094	0.0063	0.0001	0.0007	0.0001
平均值	0.0065	0.0036	0.0003	0.0084	0.0098	0.0063	0.0001	0.0006	0.0003
最大值	0.0074	0.004	0.0004	0.01036	0.0107	0.0064	0.0002	0.00091	0.00056
最小值	0.0059	0.003	0.0002	0.0064	0.0093	0.0061	0.00001	0.0001	0.0001
极差	0.0015	0.001	0.0002	0.00396	0.0014	0.0003	0.00019	0.00081	0.00046

表 81 纯镁 Pure-XRF 测定实验室内极差汇总

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
中铝郑州院	0.0019	0.0007	0.0003	0.0024	0.0004	0.0004	0.0002	0.0003	0.0003
导弹院	0.0023	0.0005	/	0.0020	0.0003	0.0002	/	/	/
国家镁中心	0.002	0.001	0.0003	0.0027	0.0018	0.0016	0.0001	0.0004	0.0002
国标北京	0.0052	0.0002	0.00069	0.0022	0.0005	0.0002	0.0001	0.00027	0.00019

昆明冶金院	0.00266	0.00017	0.00022	0.00388	0.0003	0.00028	/	0.0004	0.00038
上海交大	0.0027	0.0008	0.0002	0.0026	0.0003	0.0003	0.0000	0.0009	0.0004
最大极差	0.0052	0.001	0.00069	0.00388	0.0018	0.0016	0.0002	0.0009	0.0004

表 82 纯镁 058#-XRF 测定实验室内极差汇总

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
中铝郑州院	0.0014	0.0008	0.0002	0.0013	0.0009	0.0003	0.0001	0.0002	0.0002
导弹院	0.0002	0.0010	/	0.0016	0.0025	0.0002	/	/	/
国家镁中心	0.0017	0.0017	0.0003	0.002	0.0037	0.0015	0.0001	0.0001	0.0002
国标北京	0.0009	0.001	0.0001	0.0016	0.0028	0.0001	0.00001	0.0002	0.0001
昆明冶金院	0.00047	0.00058	0.00006	0.00034	0.00251	0.00006	0.00005	0.00025	0.00006
上海交大	0.0015	0.0006	0.0004	0.0041	0.0025	0.0002	0.0000	0.0001	0.0005
最大极差	0.0017	0.0017	0.0004	0.0041	0.0037	0.0015	0.0001	0.00025	0.0005

纯镁的测定数据表明实验室之间的测定数据相吻合,证明方法的可靠性良好,本方法具 有推广性。

3.6.2 常规镁合金系列测定

常规镁合金程序测定未知样样品包含 AZ91-Z(2块,铸造)、AZ91-B(4块,变形态)、 AM60-Z(2块,铸造)、AZ63-Z(2块,铸造)、AZ31-B(3块,变形态)、ZM21-Z(2块, 铸造)、AS31-Z(4块、铸造)。

3. 6. 2. 1 AZ91 镁合金测定

AZ91 铸造和变形两类样品的各复验单位测定结果见表 83-表 87, 各验证单位测定数据 汇总见表 88, 各复验单位的实验室内极差数据汇总见表 89。

表 83 导弹院-AZ91 镁合金样品的多次测定

	表 83	号弹院-AZ	91 镁合金样品	占的多次测定	单位:	% ,	
样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ91-Z-1	9. 231	0.689	0. 194	0. 0387	0.0022	0.0074	0.0001
AZ91-Z-2	9. 237	0.691	0. 191	0. 0390	0.0021	0.0074	0.0001
AZ91-Z-3	9. 232	0.690	0. 193	0. 0400	0.0019	0.0076	0.0001
AZ91-Z-4	9. 238	0.689	0. 192	0. 0401	0.0020	0.0075	0.0001
AZ91-Z-5	9. 221	0.688	0. 193	0. 0392	0.0019	0.0075	0.0001
AZ91-Z-6	9. 225	0.689	0. 194	0. 0399	0.0018	0.0075	0.0001
平均值	9. 231	0.689	0. 193	0. 0395	0.0020	0.0075	0.0001
标准偏差	0.00665	0.00103	0.00117	0.000591	0.000147	0.0000753	/
相对标准偏差	0.072	0.150	0.606	1. 498	7. 422	1.006	/
最大值	9. 238	0.691	0. 194	0. 0401	0.0022	0.0076	/
最小值	9. 221	0.688	0. 191	0. 0387	0.0018	0.0074	/
极差	0.017	0.0030	0.0030	0.0014	0.0004	0.0002	/
样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ91-B-1	9. 301	0.681	0.315	0. 0160	0.0034	/	0.0001
AZ91-B-2	9. 306	0.680	0.316	0. 0176	0.0035	/	0.0001
AZ91-B-3	9. 322	0.676	0. 318	0. 0173	0.0036	/	0.0001

AZ91-B-4	9. 320	0.665	0.318	0.0180	0.0036	/	0.0001
AZ91-B-5	9. 246	0.677	0. 336	0. 0154	0.0040	/	0.0001
AZ91-B-6	9. 243	0.664	0. 335	0. 0159	0.0043	/	0.0001
AZ91-B-7	9. 281	0.669	0. 335	0. 0161	0.0042	/	0.0001
AZ91-B-8	9. 268	0.672	0. 335	0. 0147	0.0040	/	0.0001
平均值	9. 286	0.671	0. 327	0.0164	0.0039	/	0.0001
标准偏差	0.0313	0.00695	0.0101	0.00121	0.00034	/	/
相对标准偏差	0.337	1.037	3. 095	7. 371	8. 783	/	/
最大值	9. 322	0.681	0. 336	0.0180	0.0043	/	/
最小值	9. 243	0.664	0.315	0. 0147	0.0034	/	/
极差	0.079	0.017	0.021	0.0033	0.0009	/	/

表 84 国家镁中心-AZ91 镁合金样品的多次测定

样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-Z-1	9. 1677	0. 6544	0. 1725	0.0342	0.0015	0.0075	0.0005
AZ91-Z-2	9.0790	0. 6795	0. 1794	0.0349	0.0013	0.0086	0.0007
AZ91-Z-3	9. 1364	0. 6599	0. 1866	0.0359	0.0014	0.0072	0.0006
AZ91-Z-4	9. 1887	0. 6922	0. 1821	0.0350	0.0012	0.0078	0.0007
AZ91-Z-5	9. 0155	0. 6945	0. 1766	0.0340	0.0014	0.0071	0.0005
AZ91-Z-6	8. 9845	0. 6532	0. 1702	0.0332	0.0015	0.0072	0.0004
平均值	9. 0953	0. 6723	0. 1779	0. 0345	0.0014	0.0076	0.0006
标准偏差	0.08314	0. 01887	0. 00609	0.00095	0.00012	0.00057	0.00012
相对标准偏差	0. 9141	2. 8063	3. 4259	2. 7541	8. 4509	7. 5071	21.3716
最大值	9. 1887	0. 6945	0. 1866	0. 0359	0.0015	0.0086	0.0007
最小值	8. 9845	0.6532	0. 1702	0.0332	0.0012	0.0071	0.0004
极差	0. 2042	0.0413	0.0164	0.0028	0.0003	0.0015	0.0003
样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-B-1	9. 1598	0. 6751	0. 3342	0.0135	0.0041	/	0.0002
AZ91-B-2	9. 2569	0. 6688	0. 3154	0.0148	0.0036	/	0.0001
AZ91-B-3	9. 0438	0.6612	0. 3298	0.0133	0.0044	/	0.0002
AZ91-B-4	9. 1158	0. 6542	0. 3114	0.0144	0.0042	/	0.0002
AZ91-B-5	9. 1934	0. 6678	0. 3254	0.0134	0.0038	/	0.0001
AZ91-B-6	9. 2897	0. 6732	0. 3348	0.0130	0.0041	/	0.0002
AZ91-B-7	9. 0436	0. 6529	0. 3351	0.0127	0.0042	/	0.0002
AZ91-B-8	9. 1487	0. 6785	0. 3268	0.0138	0.0042	/	0.0001
平均值	9. 1565	0. 6665	0. 3266	0.0136	0.0041	/	0.0002
标准偏差	0.08973	0. 00952	0.00899	0.00070	0.00025	/	0.00005
相对标准偏差	0.9800	1. 4282	2. 7518	5. 1414	6. 2565	/	31. 8492
最大值	9. 2897	0. 6785	0. 3351	0.0148	0.0044	/	0.0002
最小值	9. 0436	0. 6529	0. 3114	0.0127	0.0036	/	0.0001
极差	0. 2461	0. 0256	0. 0237	0.0021	0.0008	/	0.0001

表 85 国标北京-AZ91 镁合金样品的多次测定

				1			1
样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ91-Z-1	9.315	0.682	0. 1870	0.0367	0.0023	0.0083	0.0005
AZ91-Z-2	9.319	0.682	0. 1870	0. 0368	0.0020	0.0083	0.0004
AZ91-Z-3	9.316	0.681	0. 1871	0.0366	0.0021	0.0083	0.0004
AZ91-Z-4	9. 157	0.667	0. 1860	0.0326	0.0021	0.0081	0.0004
AZ91-Z-5	9. 173	0.677	0. 1870	0. 0323	0.0020	0.0081	0.0004
AZ91-Z-6	9.176	0.677	0. 1872	0. 0325	0.0021	0.008	0.0004
平均值	9. 241	0.678	0. 1868	0.0346	0.0021	0.0082	0.0004
最大值	9.319	0.682	0. 1872	0.0368	0.0023	0.0083	0.0005
最小值	9. 157	0.667	0. 186	0. 0323	0.002	0.008	0.0004
极差	0.162	0.015	0.0012	0.0045	0.0003	0.0003	0.0001
样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ91-B-1	9. 494	0.672	0.316	0.0059	0.0053	/	0.0001
AZ91-B-2	9.495	0.672	0.316	0.0061	0.005	/	0.0002
AZ91-B-3	9. 555	0.673	0.315	0.0061	0.0051	/	0.0002
AZ91-B-4	9.562	0.673	0.316	0.0062	0.0051	/	0.0002
AZ91-B-5	9.36	0.658	0.332	0.0062	0.0058	/	0.0002
AZ91-B-6	9.364	0.659	0. 333	0.0068	0.0057	/	0.0001
AZ91-B-7	9.344	0.661	0.332	0.0069	0.0057	/	0.0001
AZ91-B-8	9.348	0.661	0. 333	0.0066	0.0057	/	0.0001
平均值	9.440	0.666	0. 324	0.0064	0.0054	/	0.0002
最大值	9.562	0.673	0.333	0.0069	0.0058	/	0.0002
最小值	9.344	0.658	0.315	0.0059	0.005	/	0.0001
极差	0.218	0.015	0.018	0.001	0.0008	/	0.0001

表 86 昆明冶金院-AZ91 镁合金样品的多次测定

È	包	立	:	0
_	_		•	

样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-Z-1	9.0408	0.6771	0.1845	0.0370	0.0009	0.0082	0.0006
AZ91-Z-2	9.0011	0.6773	0.1842	0.0368	0.0012	0.0081	0.0005
AZ91-Z-3	9.0208	0.677	0.1848	0.0361	0.0011	0.0082	0.0006
AZ91-Z-4	8.9562	0.6765	0.1854	0.0368	0.0011	0.008	0.0005
AZ91-Z-5	8.9761	0.6756	0.1856	0.0369	0.0009	0.0081	0.0006
AZ91-Z-6	8.9635	0.6766	0.1856	0.0361	0.0009	0.0081	0.0005
平均值	8.9931	0.6767	0.185	0.0366	0.001	0.0081	0.0006
标准偏差	0.0336	0.0006	0.0006	0.0004	0.0001	0.0001	0.0001
相对标准偏差	0.37	0.09	0.32	1.09	10	1.23	16.67
最大值	9.0408	0.6773	0.1856	0.037	0.0012	0.0082	0.0006
最小值	8.9562	0.6756	0.1842	0.0361	0.0009	0.008	0.0005
极差	0.0846	0.0017	0.0014	0.0009	0.0003	0.0002	0.0001
样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-B-1	9.2227	0.6804	0.3171	0.0156	0.0044	\	0.0002
AZ91-B-2	9.2216	0.6792	0.3168	0.0141	0.0045	\	0.0002
AZ91-B-3	9.1233	0.6709	0.3126	0.0135	0.0044	\	0.0004
AZ91-B-4	9.126	0.6698	0.3137	0.0136	0.0047	\	0.0003

AZ91-B-5	9.1492	0.6659	0.3346	0.0152	0.0052	\	0.0003
AZ91-B-6	9.1679	0.6656	0.3351	0.0144	0.0051	\	0.0002
AZ91-B-7	8.9933	0.6579	0.3307	0.0142	0.0051	\	0.0001
AZ91-B-8	9.0324	0.6581	0.3304	0.0137	0.0053	\	0.0002
平均值	9.13	0.668	0.324	0.0140	0.0048	\	0.0002
标准偏差	0.082	0.008	0.01	0.001	0.0004	\	0.0001
相对标准偏差	0.9	1.2	3.09	2.94	8.33	\	50
最大值	9.2227	0.6804	0.3351	0.0156	0.0053	\	0.0004
最小值	8.9933	0.6579	0.3126	0.0135	0.0044	\	0.0001
极差	0.2294	0.0225	0.0225	0.0021	0.0009	\	0.0003
	表 87 上海	与交大-AZ91 °	镁合金样品的	多次测定	单位	: %	
样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ91-Z-2#-1	9. 23	0.670	0. 195	0.034	0.0008	0.0085	0.0005
AZ91-Z-3#-1	9. 19	0.666	0. 193	0.035	0.0007	0.0084	0.0007
AZ91-Z-2#-2	9. 23	0.668	0. 194	0.036	0.0011	0.0085	0.0006
AZ91-Z-3#-2	9. 18	0.666	0. 193	0.036	0.0010	0.0085	0.0006
AZ91-Z-2#-3	9. 20	0.669	0. 194	0.037	0.0010	0.0085	0.0006
AZ91-Z-3#-3	9. 21	0.667	0. 193	0.039	0.0009	0.0085	0.0007
平均值	9. 21	0.668	0. 194	0.035	0.0009	0.0085	0.0006
标准偏差	0.03	0.002	0.001	0.001	0.0002	0.0001	0.0001
相对标准偏差	0. 29	0.29	0.49	2.7	20	0.59	14
最大值	9. 23	0.670	0. 195	0.039	0.0011	0.0085	0.0007
最小值	9. 18	0.666	0. 193	0.034	0.0007	0.0084	0.0005
极差	0.05	0.004	0.002	0.005	0.0004	0.0001	0.0002
样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ91-B-1	9.30	0.662	0.315	0.010	0.0047	/	0.0003
AZ91-B-2	9.26	0.664	0.311	0.010	0.0047	/	0.0003
AZ91-B-3	9.23	0.652	0.332	0.011	0.0056	/	0.0003
AZ91-B-4	9.24	0.654	0.330	0.010	0.0056	/	0.0002
AZ91-B-5	9.29	0.663	0.314	0.012	0.0049	/	0.0003
AZ91-B-6	9.25	0.664	0.311	0.011	0.0049	/	0.0003
AZ91-B-7	9.23	0.651	0.329	0.013	0.0056	/	0.0004
AZ91-B-8	9.23	0.656	0.328	0.012	0.0056	/	0.0002
平均值	9.254	0.658	0.321	0.011	0.0052	/	0.0003
最大值	9.3	0.664	0.332	0.013	0.0056	/	0.0004
最小值	9.23	0.651	0.311	0.01	0.0047	/	0.0002
极差	0.07	0.013	0.021	0.003	0.0009	/	0.0002
I	表 88	AZ91 镁合	' '金样品测定泪		上 单位: %	I	I
 单位	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-Z 化学值 A*	8. 876	0.681	0. 187	0.0364	0.0013	0.008	0.0006
中铝郑州院	8. 878	0. 681	0. 1875	0.0366	0.0012	0.008	0.0006
国家镁中心	9. 0953	0.6723	0. 1779	0.0345	0.0012	0.0076	0.0006
	1.0000	0.0.20					2. 3000

0.0395

0.002

0.0075

0.0001

0.193

导弹院

9.231

0.689

国标北京	9.241	0.678	0.1868	0.0346	0.0021	0.0082	0.0004
昆明冶金院	8.9931	0.6767	0.185	0.0366	0.001	0.0081	0.0006
上海交大	9.21	0.668	0. 194	0.035	0.0009	0.0085	0.0006
AZ91-Z 化学值 B**	8.81	0.665	0. 210				
平均值	9.108	0.682	0.187	0.036	0.001	0.008	0.0005
最大值	9.241	0.702	0.194	0.0395	0.0021	0.0085	0.0006
最小值	8.878	0.668	0.1779	0.0345	0.0009	0.0075	0.0001
极差	0.363	0.034	0.0161	0.005	0.0012	0.001	0.0005
单位	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-B 化学值 A*	8.69	0.64	0.39	0.018	0.0056	/	0.0003
中铝郑州院	8.94	0.676	0. 324	0.0142	0.0048	/	0.0002
国家镁中心	9. 1565	0.6665	0. 3266	0.0136	0.0041	/	0.0002
导弹院	9. 286	0.671	0. 327	0.0164	0.0039	/	0.0001
国标北京	9.44	0.666	0.324	0.0064	0.0054	/	0.0002
昆明冶金院	9.13	0.668	0.324	0.014	0.0048	/	0.0002
上海交大	9.254	0.658	0.321	0.0111	0.0052	/	0.0003
AZ91-B 化学值 B**	9.03	0.655	0.41				
平均值	9.201	0.668	0.324	0.013	0.005	/	0.000
最大值	9.44	0.676	0.327	0.0164	0.0054	/	0.0003
最小值	8.94	0.658	0.321	0.0064	0.0039	/	0.0001
极差	0.5	0.018	0.006	0.01	0.0015	/	0.0002

表 89 AZ91 镁合金样品测定实验室内极差汇总

单位: %

AZ91-Z+单位	A1	Zn	Mn	Si	Fe	Cu	Ni
中铝郑州院	0.148	0.016	0.0056	0.0048	0.0007	0.0012	0.0003
国家镁中心	0. 2042	0.0413	0.0164	0.0028	0.0003	0.0015	0.0003
导弹院	0.017	0.003	0.003	0.0014	0.0004	0.0002	/
国标北京	0.162	0.015	0.0012	0.0045	0.0003	0.0003	0.0001
昆明冶金院	0.0846	0.0017	0.0014	0.0009	0.0003	0.0002	0.0001
上海交大	0.05	0.004	0.002	0.005	0.0004	0.0001	0.0002
最大极差	0.2042	0.0413	0.0164	0.005	0.0007	0.0015	0.0003
AZ91-B+单位	Al	Zn	Mn	Si	Fe	Cu	Ni
中铝郑州院	0.162	0.029	0.024	0.0027	0.0011	/	0.0003
国家镁中心	0. 2461	0.0256	0.0237	0.0021	0.0008	/	0.0001
导弹院	0.079	0.017	0.021	0.0033	0.0009	/	/
国标北京	0.218	0.015	0.018	0.001	0.0008	/	0.0001
昆明冶金院	0.2294	0.0225	0.0225	0.0021	0.0009	/	0.0003
上海交大	0.07	0.013	0.021	0.003	0.0009	/	0.0002
最大极差	0.2461	0.029	0.024	0.0033	0.0011	/	0.0003

3. 6. 2. 2 AM60-Z 镁合金测定

AM60-Z 样品的各复验单位测定结果见表 90-表 94,各验证单位测定数据汇总见表 95,

表 90 导弹院-AM60-Z 镁合金样品的多次测定

24	1		0.7
单	W	•	- %

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AM60-Z-1	6. 343	0.047	0. 284	0. 0241	0.0017	0.0023	/
AM60-Z-2	6. 351	0.046	0. 283	0. 0252	0.0014	0.0024	/
AM60-Z-3	6.360	0.046	0. 288	0. 0236	0.0015	0.0023	/
AM60-Z-4	6. 343	0.047	0. 288	0. 0245	0.0015	0.0024	/
AM60-Z-5	6. 322	0.047	0. 284	0. 0248	0.0015	0.0024	/
AM60-Z-6	6. 323	0.047	0. 283	0. 0253	0.0017	0.0023	/
平均值	6. 340	0.047	0. 285	0. 0246	0.0016	0.0024	/
标准偏差	0. 0152	0.000516	0.00237	0.000655	0.00012	0.000055	/
相对标准偏差	0. 239	1.107	0.830	2. 666	7. 902	2. 331	/
最大值	6.360	0.047	0. 288	0. 0253	0.0017	0.0024	/
最小值	6. 322	0.046	0. 283	0. 0236	0.0014	0.0023	/
极差	0.038	0.001	0.005	0.0017	0.0003	0.0001	/

表 91 国家镁中心-AM60-Z 镁合金样品的多次测定

AM60-Z-1	6. 347	0.0392	0. 2422	0.0221	0.0011	0.0021	0.0005
AM60-Z-2	6.350	0. 0445	0. 2582	0. 0242	0.0011	0.0019	0.0005
AM60-Z-3	6.349	0. 0386	0. 2393	0. 0238	0.0011	0.0022	0.0006
AM60-Z-4	6. 428	0. 0449	0. 2457	0.0237	0.0009	0.0024	0.0005
AM60-Z-5	6. 434	0.0422	0. 2621	0.0209	0.0009	0.0025	0.0004
AM60-Z-6	6. 433	0.0419	0. 2549	0.0214	0.0009	0.0025	0.0004
平均值	6.390	0.0419	0. 2504	0. 0227	0.001	0.0023	0.0005
标准偏差	0. 14899	0.00261	0.00928	0.0014	0.00011	0.00024	0.00008
相对标准偏差	2. 4135	6. 2287	3. 7058	6. 1556	10. 9545	10. 6858	15. 5746
最大值	6. 434	0.0449	0. 2621	0.0242	0.0011	0.0025	0.0006
最小值	6. 347	0.0386	0. 2393	0.0209	0.0009	0.0019	0.0004
极差	0.087	0.0063	0. 0228	0.0033	0.0002	0.0006	0.0002

表 92 国标北京-AM60-Z 镁合金样品的多次测定

单位: %

样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AM60-Z-1	6.347	0.0439	0.2822	0.021	0.0013	0.0031	0.0003
AM60-Z-2	6.350	0.0443	0.2829	0.0212	0.0014	0.0031	0.0003
AM60-Z-3	6.349	0.0441	0.2827	0.0218	0.0013	0.0031	0.0003
AM60-Z-4	6.428	0.0440	0.2871	0.0218	0.0013	0.0032	0.0002
AM60-Z-5	6.434	0.0440	0.2852	0.0215	0.0013	0.0031	0.0002
AM60-Z-6	6.433	0.0440	0.2859	0.0216	0.0013	0.0032	0.0003
平均值	6.390	0.0440	0.2843	0.0215	0.0013	0.0031	0.0003
标准偏差	0.0455	0.0001	0.0020	0.0003	0.00004	0.00005	0.00005
相对标准偏差	0.72	0.32	0.71	1.51	3.10	1.65	19.36
最大值	6.434	0.0443	0.2871	0.0218	0.0014	0.0032	0.0003
最小值	6.347	0.0439	0.2822	0.021	0.0013	0.0031	0.0002

	极差			0.087	0.000	4 0	0.0049	0.000	8	0.0001	0.0001	0.0001
	į	表 93	昆明冶	台金院-AM	160−Z 镁	合金样	品的多	吹测定	,	单	位: %	
样品		Al		Zn		Mn		Si		Fe	Cu	Ni
AM60-Z	Z-1	6.159	9	0.043	().2787	0.	0282	(0.0009	0.0029	0.0005
AM60-Z	Z-2	6.157	7	0.0431	. ().2791	0	0.025		0.0009	0.0031	0.0004
AM60-Z	Z-3	6.176	3	0.0428	3 ().2794	0.	0278	(0.0007	0.0029	0.0004
AM60-Z	Z-4	6.178	3	0.0434	().2795	0.	0251	(0.0005	0.0029	0.0005
AM60-Z	Z-5	6.202	5	0.0434	- ().2792	0.	0248	(0.0004	0.0029	0.0005
AM60-Z	Z-6	6.189	6	0.0435	5 ().2794	0.	0247	(0.0005	0.0028	0.0003
平均值	Ĺ	6.177	4	0.0432	2 ().2792	0.	0259	(0.0007	0.0029	0.0004
标准偏	差	0.017	2	0.0003	6	0.0003	0.	0016	(0.0002	0.0001	0.0001
相对标准	偏差	0.28		0.69		0.11	3	3.49		28.57	3.45	25
最大值	Ĺ	6.202	5	0.0435	5 ().2795	0.	0282	(0.0009	0.0031	0.0005
最小值	Ĺ	6.157	7	0.0428	3 (0.2787	0.	0247	(0.0004	0.0028	0.0003
极差		0.044	8	0.0007	' (8000.0	0.	0035	(0.0005	0.0003	0.0002
		表 94	上海	交大-AM6	60-Z 镁台	合金样。	品的多次	(测定		单位	Ž: %	
	样品			A1	Zn		Mn	Si		Fe	Cu	Ni
AM60	0-Z-1#-	1		6. 29	0.046		0.277	0.02	27	0.0005	0.0032	0.0005
AM6	0-Z-1#-	-2		6. 29	0.046	(0. 283	0.02	28	0.0001	0.0031	0.0005
AM6	0-Z-1#-	-3		6. 29	0.045	(0. 283	0.02	29	0.0006	0.0032	0.0005
AM60	0-Z-1#-	-4		6. 29	0.046		0.276	0.02	29	0.0005	0.0032	0.0005
AM60	0-Z-1#-	-5		6.30	0.045		0. 283	0.02	29	0.0005	0.0032	0.0005
AM60	0-Z-1#-	-6		6. 29	0.046		0. 285	0.03	30	0.0005	0.0032	0.0004
Ž	平均值			6. 29	0.046		0. 281	0.02	29	0.0005	0.0032	0.0005
标	准偏差		0	0.004	0.001	C	. 0034	0.00)1	0.0002	0.00004	0.0002
相对	标准偏	差	C	0.065	1.1		1.205	3.6	3	39	1.3	37. 7
£	最大值			6.30	0.046	(0. 285	0.03	30	0.0006	0.0032	0.0005
£	最小值			6. 29	0.045	(0.276	0.02	27	0.0001	0.0031	0.0001
	极差			0.01	0.001	-	0.009	0.00)3	0.0005	0.0001	0.0004
		表	95	AM60-Z	2 镁合金	样品测	定汇总			单位: %	-	
单位	I	11		Zn	Mı	ı	S	i		Fe	Cu	Ni
60-Z 化学值	6.	19	0.	051	0.2	97	0.0)28	C	. 0016	0.0025	0.0008
中铝郑州院	6.	059	0.	046	0.2	73	0.0	231	C	.0012	0.0028	0.0005
国家镁中心	6.	39	0.	0419	0. 25	504	0.0	227	-	0.001	0.0023	0.0005
导弹院	6.	34	0.	047	0. 2	85	0.0	246	C	. 0016	0.0024	0.0001
国标北京	6.	.39	0.	.044	0.28	343	0.02	215	(0.0013	0.0031	0.0003
昆明冶金院	6.1	774	0.0	0432	0.27	92	0.02	259	(0.0007	0.0029	0.0004
上海交大	6.	292	0.	046	0. 2	81	0.0	287	C	. 0005	0.0032	0.0005
平均值	6.2	275	0.	.045	0.2	75	0.02	244	(0.0011	0.0028	0.0004
最大值	6.	.39	0.	.047	0.2	85	0.02	287	(0.0016	0.0032	0.0005
最小值	6.0	059	0.0	0419	0.25	504	0.02	215	(0.0005	0.0023	0.0001
极差	0	331		0051	0.03	346	0.00			0.0011	0.0009	0.0004
		表 96	AMGO) 镁合金h			1	<u> </u>			0/	

单位	A1	Zn	Mn	Si	Fe	Cu	Ni
中铝郑州院	0.0659	0.0017	0.0086	0.0051	0.0007	0.0003	0.0002
国家镁中心	0. 087	0.0063	0.0228	0.0033	0.0002	0.0006	0.0002
导弹院	0.038	0.001	0.005	0.0017	0.0003	0.0001	/
国标北京	0.087	0.0004	0.0049	0.0008	0.0001	0.0001	0.0001
昆明冶金院	0.0448	0.0007	0.0008	0.0035	0.0005	0.0003	0.0002
上海交大	0.01	0.001	0	0.003	0.0002	0.0001	0.0001
最大极差	0.087	0.0063	0.0228	0.0051	0.0007	0.0006	0.0002

3. 6. 2. 3 AZ63-Z 镁合金测定

AZ63-Z 样品的各复验单位测定结果见表 97-表 101,各验证单位测定数据汇总见表 102,各复验单位的实验室内极差数据汇总见表 103。

表 97	导弹院-A763-7	2.镁合金样品的多次测定	单位: %
12 01		/ K ロ ホイエロロロコン1人1人1公 K	I'/. i /0

	, ,	3 3 1 13 5	** B (X H 3L)		,,,,,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ63-Z-1	5. 842	2.930	0. 243	0. 0301	0.0016	0.0007	0.0009
AZ63-Z-2	5. 916	2.936	0. 243	0. 0306	0.0016	0.0007	0.0009
AZ63-Z-3	5.860	3.049	0. 239	0. 0337	0.0012	0.0007	0.0009
AZ63-Z-4	5. 853	3.045	0. 239	0. 0336	0.0014	0.0009	0.0008
AZ63-Z-5	5. 854	3.070	0. 241	0.0310	0.0014	0.0010	0.0009
AZ63-Z-6	5. 842	3.067	0. 241	0.0310	0.0014	0.0010	0.0010
平均值	5. 861	3.016	0. 241	0. 0317	0.0014	0.0008	0.0009
标准偏差	0. 0278	0.0652	0.00179	0. 00157	0.000150	0.000150	0.0000632
相对标准偏差	0. 474	2. 161	0. 742	4.964	10. 504	18.067	7. 027
最大值	5. 916	3.070	0. 243	0. 0337	0.0016	0.0010	0.0010
最小值	5. 842	2. 930	0. 239	0. 0301	0.0012	0.0007	0.0008
极差	0.074	0.140	0.0040	0.0036	0.0004	0.0003	0.0002

表 98 国家镁中心-AZ63-Z 镁合金样品的多次测定 单位: %

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ63-Z-1	5. 6592	2. 7921	0. 2152	0.0239	0.0009	0.0008	0.0006
AZ63-Z-2	5. 7823	2. 9743	0. 2111	0.0273	0.0008	0.0009	0.0008
AZ63-Z-3	5. 6144	2.8215	0. 2402	0.0258	0.0009	0.0008	0.0008
AZ63-Z-4	5. 5788	2.8854	0. 2211	0.0276	0.0004	0.0009	0.0008
AZ63-Z-5	5. 6397	2.8164	0. 2289	0.0251	0.0007	0.0006	0.0005
AZ63-Z-6	5. 6597	2. 7546	0. 2248	0.0245	0.0007	0.0007	0.0006
平均值	5. 6557	2.8407	0. 2236	0.0257	0.0007	0.0008	0.0007
标准偏差	0.06918	0.07821	0.01037	0.00150	0.00019	0.00012	0.00013
相对标准偏差	1. 2232	2. 7531	4. 6407	5. 8288	25. 3895	14. 9240	19. 4511
最大值	5. 7823	2. 9743	0. 2402	0.0276	0.0009	0.0009	0.0008
最小值	5. 5788	2.7546	0. 2111	0.0239	0.0004	0.0006	0.0005
极差	0. 2035	0. 2197	0.0291	0.0037	0.0005	0.0003	0.0003

表 99 国标北京-AZ63-Z 镁合金样品的多次测定

样品	1	A	1	Zn	M	[n	Si	Fe	Cu	Ni
AZ63-	Z-1	5.56	54	2.83	0.24	407	0.032	0.0012	0.0001	0.0005
AZ63-	Z-2	5.57	74	2.829	0.24	412	0.0313	3 0.0011	0.0001	0.0005
AZ63-	Z-3	5.66	59	3.030	0.24	425	0.031	0.0010	0.0004	0.0004
AZ63-	Z-4	5.67	78	3.028	0.24	125	0.0310	0.0009	0.0003	0.0007
AZ63-	Z-5	5.77	77	3.067	0.24	145	0.036	0.0010	0.0002	0.0007
AZ63-	Z-6	5.77	79	3.065	0.24	436	0.0358	3 0.0012	0.0003	0.0006
平均	值	5.67	74	2.975	0.24	430	0.0329	9 0.0011	0.0002	0.0006
标准偏	差	0.09	36	0.114	0.00	014	0.0024	4 0.0001	0.0001	0.0001
相对标准	上偏差	1.6	5	3.83	0.5	59	7.28	11.35	51.90	21.37
最大	值	5.77	79	3.067	0.24	145	0.036	0.0012	0.0004	0.0007
最小	值	5.50	54	2.829	0.24	407	0.031	0.0009	0.0001	0.0004
极差	<u> </u>	0.21	15	0.238	0.00	038	0.005	1 0.0003	0.0003	0.0003
	表 100	昆明冶金	完-AZ63	B-Z 镁合	金样品	品的多	次测定		单位: %	
样品		A1	7	Zn	M	n	Si	Fe	Cu	Ni
AZ63-Z-	-1	5.4847	2.8	3664	0.24	137	0.036	\	0.0005	0.0006
AZ63-Z-	-2	5.4889	2.8	3584	0.24	137	0.0327	7 \	0.0006	0.0006
AZ63-Z-	-3	5.4778	2.8	3595	0.2	43	0.0345	5 \	0.0004	0.0005
AZ63-Z-	-4	5.6407	3.0)427	0.2	44	0.0337	7 \	0.0007	0.0008
AZ63-Z-	-5	5.6318	3.0)426	0.24	146	0.032	\	0.0008	0.0007
AZ63-Z-	-6	5.6306	3.0)435	0.24	142	0.0335	5 \	0.0008	0.0008
平均值		5.5591	2.9	522	0.24	139	0.0337	7 \	0.0006	0.0007
标准偏差		0.0826	0.0	994	0.00	005	0.0014	1 \	0.0002	0.0001
相对标准位	扁差	1.49	3.	.37	0.2	21	2.61	\	33.33	14.29
最大值		5.6407	3.0)435	0.24	146	0.036	\	0.0008	0.0008
最小值		5.4778	2.8	3584	0.2	43	0.032	\	0.0004	0.0005
极差		0.1629	0.1	851	0.00)16	0.004	. \	0.0004	0.0003
	表 101	 上海交大	-AZ63-	-Z 镁合会	 金样品	的多次	 欠测定		位: %	
 样品	A1		Zn	M	n		Si	Fe	Cu	Ni
AZ63-Z-1	5. 79	3.	. 06	0. 2	243	0.	042	0.0006	0.0013	0.0007
AZ63-Z-2	5. 79	3.	. 06	0. 2	243	0.	043	0.0005	0.0013	0.0007
AZ63-Z-3	5. 80) 3.	. 05	0. 2	243	0.	044	0.0001	0.0014	0.0007
AZ63-Z-4	5. 79	3.	. 06	0. 2	242	0.	044	0.0001	0.0013	0.0007
AZ63-Z-5	5. 78		. 06	0. 2	243	0.	044	0.0001	0.0014	0.0007
AZ63-Z-6	5. 80) 3.	. 06	0. 2	243	0.	044	0.0001	0.0014	0.0008
 平均值	5. 79		. 06	0. 2			.043	0.0003	0.0012	0.0006
最大值	5. 80		. 06	0. 2		0.	044	0.0006	0.0014	0.0008
最小值	5. 78		. 05	0. 2			042	0.0001	0.0013	0.0007
极差	0.02		. 01	0.0			002	0.0005	0.0001	0.0001
表 102 AZ63-Z 镁									I	1
单位 Al Zn				M		1	Si	Fe	Cu	Ni
Z63-Z 化学值	5. 68		. 02	0. 2			0316	0.0013	0.001	0.001
	+ 0.00	- 0.		+		· ·				+

0.0293

0.0009

0.0007

0.0008

0.2374

中铝郑州院

5.5

2.963

国家镁中心	5. 6557	2.8407	0. 2236	0. 0257	0.0007	0.0008	0.0007
导弹院	5.861	3.016	0. 241	0.0317	0.0014	0.0008	0.0009
国标北京	5.674	2.975	0.243	0.0329	0.0011	0.0002	0.0006
昆明冶金院	5.5591	2.9522	0.2439	0.0337	\	0.0006	0.0007
上海交大	5. 792	3.06	0. 243	0.043	0.0003	0.0012	0.0006
平均值	5.674	2.968	0.239	0.033	0.001	0.001	0.001
最大值	5.861	3.060	0.244	0.043	0.0014	0.0012	0.0009
最小值	5.500	2.841	0.224	0.026	0.0003	0.0002	0.0006
极差	0.361	0.219	0.020	0.017	0.0011	0.0010	0.0003

表 103 AZ63 镁合金样品测定实验室内极差汇总

单位: %

单位: %

单位	A1	Zn	Mn	Si	Fe	Cu	Ni
中铝郑州院	0. 1753	0. 1628	0.0084	0.005	0.0002	0.0004	0.0005
国家镁中心	0. 2035	0. 2197	0.0291	0.0037	0.0005	0.0003	0.0003
导弹院	0.074	0.140	0.0040	0.0036	0.0004	0.0003	0.0002
国标北京	0.215	0.238	0.0038	0.0051	0.0003	0.0003	0.0003
昆明冶金院	0.1629	0.1851	0.0016	0.004	\	0.0004	0.0003
上海交大	0.020	0.0045	0.00083	0.0015	0.00022	0.0001	0.0001
最大极差	0.215	0.238	0.0291	0.0051	0.0005	0.0004	0.0005

3. 6. 2. 4 AZ31-B 镁合金测定

AZ31-B 样品的各复验单位测定结果见表 104-表 108, 各验证单位测定数据汇总见表 109, 各复验单位的实验室内极差数据汇总见表 110。

表 104 导弹院-AZ31-B 镁合金样品的多次测定 单位: %

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ31-B-1	2. 705	0.886	0. 298	0. 0182	0.0031	0.0001	0.0007
AZ31-B-2	2. 700	0.887	0. 291	0. 0211	0.0034	0.0001	0.0007
AZ31-B-3	2. 772	0.933	0.300	0. 0213	0.0033	0.0001	0.0004
AZ31-B-4	2. 772	0.921	0. 291	0. 0186	0. 0035	0.0001	0.0004
AZ31-B-5	2. 672	0.905	0. 293	0. 0179	0. 0049	0.0001	0.0004
AZ31-B-6	2. 699	0.890	0. 298	0. 0181	0. 0047	0.0001	0.0004
AZ31-B-7	2. 688	0.886	0. 298	0. 0212	0.0033	0.0001	0.0007
AZ31-B-8	2. 686	0.886	0. 298	0. 0214	0.0034	0.0001	0.0007
AZ31-B-9	2. 704	0.931	0.301	0. 0196	0.0036	0.0001	0.0004
平均值	2. 711	0.903	0.296	0.0197	0.0037	0.0001	0.0005
标准偏差	0.0362	0. 0203	0.00378	0.00154	0.000647	/	0.000158
相对标准偏差	1. 334	2. 251	1.275	7.804	17. 539	/	29. 646
最大值	2. 772	0.933	0.301	0.0214	0.0049	/	0.0007
最小值	2. 672	0.886	0.291	0.0179	0.0031	/	0.0004
极差	0. 100	0.047	0.010	0.0035	0.0018	/	0.0003

表 105 国家镁中心-AZ31-B 镁合金样品的多次测定

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ31-B-1	2. 7042	0.8502	0. 2516	0.0159	0.0031	0.0002	0.0003

AZ31-B-2	2. 7859	0.8462	0. 2491	0.0143	0.0028	0.0002	0.0003
AZ31-B-3	2. 7311	0.8711	0.2411	0.0149	0.0021	0.0001	0.0004
AZ31-B-4	2.6702	0.8902	0.2565	0.0144	0.0026	0.0002	0.0005
AZ31-B-5	2.8254	0.8544	0.2435	0.0152	0.0022	0.0001	0.0003
AZ31-B-6	2.8954	0.8469	0. 2487	0.0155	0.0029	0.0001	0.0003
AZ31-B-7	2. 7793	0.8724	0.2499	0.0159	0.0028	0.0002	0.0003
AZ31-B-8	2. 7411	0.8796	0.2587	0.0149	0.0025	0.0002	0.0004
AZ31-B-9	2. 7978	0.8654	0.2563	0.0152	0.0029	0.0001	0.0003
平均值	2.7700	0.8640	0.2506	0.0151	0.0027	0.0002	0.0003
标准偏差	0.06759	0. 01559	0.00593	0.00058	0.00034	0.00005	0.00007
相对标准偏差	2. 4399	1.8044	2. 3646	3.8103	12. 6461	33. 8815	21.0914
最大值	2.8954	0.8902	0. 2587	0.0159	0.0031	0.0002	0.0005
最小值	2.6702	0.8462	0.2411	0.0143	0.0021	0.0001	0.0003
极差	0. 2252	0.044	0.0176	0.0016	0.001	0.0001	0.0002
表 106	国标北京-A	Z31-B 镁合:	金样品的多	次测定	单位	<u>\forall :</u> %	
样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ31-B-1	2.602	0.865	0.305	0.0130	0.0027	0.0001	0.0003
AZ31-B-2	2.604	0.865	0.304	0.0131	0.0027	0.0002	0.0003
AZ31-B-3	2.605	0.865	0.275	0.0121	0.0034	0.0001	0.0003
AZ31-B-4	2.398	0.813	0.276	0.0113	0.0034	0.0001	0.0002
AZ31-B-5	2.394	0.814	0.305	0.0130	0.0029	0.0001	0.0002
AZ31-B-6	2.396	0.816	0.305	0.0130	0.0031	0.0001	0.0002
AZ31-B-7	2.717	0.913	0.303	0.0130	0.0030	0.0001	0.0003
AZ31-B-8	2.719	0.913	0.305	0.0130	0.0029	0.0001	0.0002
AZ31-B-9	2.717	0.913	0.304	0.0130	0.0033	0.0001	0.0002
平均值	2.572	0.864	0.298	0.0127	0.0030	0.00011	0.00024
标准偏差	0.141	0.043	0.013	0.0006	0.0003	0.00003	0.00005
相对标准偏差	5.49	4.95	4.29	4.83	9.01	30.00	21.56
最大值	2.719	0.913	0.305	0.0131	0.0034	0.0002	0.0003
最小值	2.394	0.813	0.275	0.0113	0.0027	0.0001	0.0002
极差	0.325	0.100	0.030	0.0018	0.0007	0.0001	0.0001
表 107	昆明冶金院-	AZ31-B 镁合	金样品的多	5次测定	単	位: %	
样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ31-B-1	2.5874	0.8691	0.3003	0.0165	0.002	\	0.0003
AZ31-B-2	2.5982	0.8695	0.2976	0.016	0.0021	\	0.0001
AZ31-B-3	2.619	0.8681	0.2997	0.0168	0.002	\	0.0005
AZ31-B-4	2.6504	0.8809	0.299	0.0164	0.0022	\	0.0003
AZ31-B-5	2.6495	0.8778	0.2986	0.0166	0.0019	\	0.0003
AZ31-B-6	2.657	0.8791	0.2987	0.0167	0.002	\	0.0004
AZ31-B-7	2.5922	0.8705	0.305	0.0163	0.0022	\	0.0005
AZ31-B-8	2.653	0.8694	0.3056	0.0169	0.002	\	0.0001
AZ31-B-9	2.6063	0.8784	0.3005	0.0166	0.0023	\	0.0003
平均值	2.6237	0.8736	0.3006	0.0165	0.0021	\	0.0003
L						1	

标准偏差	0.0288	0.0052	0.0028	0.0003	0.0001	\	0.0001
相对标准偏差	1.1	0.6	0.93	0.82	4.76	\	33.33
最大值	2.657	0.8809	0.3056	0.0169	0.0023	\	0.0005
最小值	2.5874	0.8681	0.2976	0.016	0.0019	\	0.0001
极差	0.0696	0.0128	0.008	0.0009	0.0004	\	0.0004

表 108 上海交大-AZ31-B 镁合金样品的多次测定

单位: %

样品新编号	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ31-1#-1	2.67	0.848	0.298	0.023	0.0022	0.0001	0.0001
AZ31-2#-1	2.64	0.877	0.296	0.022	0.0033	0.0001	0.0006
AZ31-3#-1	2.72	0.865	0.298	0.024	0.0022	0.0001	0.0001
AZ31-1#-2	2.65	0.847	0.298	0.025	0.0021	0.0001	0.0001
AZ31-2#-2	2.63	0.881	0. 295	0.023	0.0035	0.0005	0.0005
AZ31-3#-2	2. 71	0.865	0.298	0.023	0.0022	0.0001	0.0001
AZ31-1#-3	2.65	0.848	0.298	0.024	0.0020	0.0001	0.0001
AZ31-2#-3	2.65	0.884	0.298	0.023	0.0031	0.0001	0.0005
AZ31-3#-3	2.70	0.870	0.298	0.024	0.0021	0.0001	0.0001
平均值	2. 67	0.864	0. 297	0.023	0.0026	0.0002	0.0003
标准偏差	0.04	0.014	0.001	0.001	0.0006	0.0002	0.0002
相对标准偏差	1.4	1.6	0.45	3.9	25	98	94
最大值	2. 72	0.884	0.298	0.025	0.0035	0.0005	0.0006
最小值	2.63	0.847	0. 295	0.022	0.0020	0.0001	0.0001
极差	0.09	0.037	0.003	0.003	0.0015	0.0004	0.0005

表 109 AZ31-B 镁合金样品测定汇总

单位: %

单位	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ31-B 化学值	2. 7	0.86	0.3	0.02	0.0029	\	0.0007
中铝郑州院	2. 689	0. 907	0. 297	0.0166	0.0034	\	0.0005
国家镁中心	2.77	0.864	0. 2506	0.0151	0.0027	\	0.0003
导弹院	2.711	0.903	0. 296	0. 0197	0.0037	\	0.0005
国标北京	2.572	0.864	0.298	0.0127	0.003	\	0.00024
昆明冶金院	2.6237	0.8736	0.3006	0.0165	0.0021	\	0.0003
上海交大	2.67	0.864	0. 297	0.023	0.0026	\	0.0003
平均值	2.673	0.879	0.290	0.0173	0.0029	\	0.0004
最大值	2.77	0.907	0.3006	0.023	0.0037	\	0.0005
最小值	2.572	0.864	0.2506	0.0127	0.0021	\	0.00024
极差	0.198	0.043	0.05	0.0103	0.0016	\	0.00026

表 110 AZ31-B 镁合金样品测定实验室内极差汇总

单位	A1	Zn	Mn	Si	Fe	Cu	Ni
中铝郑州院	0. 1566	0.0538	0.0191	0.0036	0.0013	/	0.0003
国家镁中心	0. 2252	0.044	0. 0176	0.0016	0.001	/	0.0002
导弹院	0.100	0.047	0.010	0.0035	0.0018	/	0.0003
国标北京	0.325	0.100	0.030	0.0018	0.0007	/	0.0001

昆明冶金院	0.0696	0.0128	0.008	0.0009	0.0004	/	0.0004
上海交大	0.09	0.034	0.003	0.003	0.0014	/	0.0004
最大极差	0.325	0.0538	0.03	0.0036	0.0018	/	0.0005

注:由于 AZ31B 是三块样品,三块中出现较大不均匀,国标北京的测定数据中大的极差为不同块中的测定偏差。

3. 6. 2. 5 ZM21-Z 镁合金测定

ZM21-Z 样品的各复验单位测定结果见表 111-表 115,各验证单位测定数据汇总见表 116,各复验单位的实验室内极差数据汇总见表 117。

表 111	导弹院-ZI	M21-Z 镁合金	样品的多次测	则定 貞	单位: %	
样品	Zn	Mn	Si	Fe	Cu	Ni
ZM21-Z-1	1. 575	0.903	0. 0151	0.0083	0.0001	/
ZM21-Z-2	1. 575	0.904	0. 0143	0.0088	0.0001	/
ZM21-Z-3	1. 593	0.902	0.0190	0.0084	0.0001	/
ZM21-Z-4	1. 588	0.900	0. 0146	0.0085	0.0001	/
ZM21-Z-5	1. 578	0.904	0. 0156	0.0086	0.0001	/
ZM21-Z-6	1. 579	0.905	0. 0158	0.0084	0.0001	/
平均值	1. 581	0.903	0.0157	0.0085	/	/
标准偏差	0.00745	0.00178	0.00170	0.000179	/	/
相对标准偏差	0. 471	0. 198	10.799	2. 105	/	/
最大值	1. 593	0.905	0.0190	0.0088	/	/
最小值	1. 575	0.900	0. 0143	0.0083	/	/
极差	0.018	0.005	0.0047	0.0005	/	/
表 112 国家	镁中心-ZM21-	-Z 镁合金样品	品的多次测定	•	单位: %	
样品	Zn	Mn	Si	Fe	Cu	Ni
ZM21-Z-1	1.5031	0.9111	0.0144	0.0061	0.0002	0.0003
ZM21-Z-2	1.4825	0.9299	0.0142	0.0064	0.0001	0.0002
ZM21-Z-3	1.4922	0.9346	0.0149	0.0059	0.0001	0.0002
ZM21-Z-4	1.5089	0.9149	0.0139	0.0064	0.0001	0.0003
ZM21-Z-5	1.4836	0.9149	0.0146	0.0058	0.0001	0.0002
ZM21-Z-6	1.4923	0.9344	0.0148	0.0062	0.0001	0.0002
平均值	1.4938	0.9233	0.0145	0.0061	0.0001	0.0002
标准偏差	0.01050	0.01081	0.00038	0.00025	0.00004	0.00005
相对标准偏差	0.7028	1.1709	2. 6109	4. 0815	34. 9927	22. 1313
最大值	1.5089	0.9346	0.0149	0.0064	0.0002	0.0003
最小值	1.4825	0.9111	0.0139	0.0058	0.0001	0.0002
极差	0.0264	0.0235	0.001	0.0006	0.0001	0.0001
表 113 国标	示北京-ZM21-	Z 镁合金样品	的多次测定	Ė	单位: %	
样品	Zn	Mn	Si	Fe	Cu	Ni
ZM21-Z-1	1.538	0.939	0.0126	0.0047	0.0002	0.0001
ZM21-Z-2	1.537	0.937	0.0120	0.0049	0.0002	0.0001
ZM21-Z-3	1.555	0.937	0.0154	0.0048	0.0001	0.0001
		l	l			l

0.0157

0.0049

0.0001

0.0001

0.940

1.555

ZM21-Z-4

ZM21-Z-5		1.540	0.9	940	0.014	-1	0.0047	0.0002	0.0001
ZM21-Z-6		1.546	0.9	938	0.013	8	0.0046	0.0001	0.0002
平均值		1.545	0.9	939	0.01	4	0.0048	0.0002	0.0001
标准偏差		0.0082	0.0	014	0.001	5	0.0001	0.00006	0.00004
相对标准偏差	差	0.53	0.	15	10.5	6	2.54	36.51	34.99
最大值		1.555	0.	94	0.015	7	0.0049	0.0002	0.0002
最小值		1.537	0.9	937	0.012	2	0.0046	0.0001	0.0001
极差		0.018	0.0	003	0.003	7	0.0003	0.0001	0.0001
表	115 上海交	大-ZM21-	Z 镁合	金样品	的多次》	则定		单位: %	
样品		Zn	M	n	Si		Fe	Cu	Ni
ZM21-Z-1		1.542	0.8	379	0.01	5	0.0071	0.0006	0.0002
ZM21-Z-2		1.536	0.8	379	0.01	6	0.0068	0.0005	0.0002
ZM21-Z-3		1.544	0.8	880	0.01	6	0.0070	0.0005	0.0003
ZM21-Z-4		1.541	0.8	379	0.01	7	0.0069	0.0004	0.0002
ZM21-Z-5		1.541	0.8	879	0.01	8	0.0070	0.0005	0.0002
ZM21-Z-6		1. 539	0.8	881	0.01	8	0.0071	0.0005	0.0002
平均值		1.541	0.8	880	0.016	67	0.00698	0.0005	0.0002
最大值		1. 544	0.8	881	0.01	8	0.0071	0.0006	0.0003
最小值		1.536	0.8	379	0.01	5	0.0068	0.0004	0.0002
极差		0.008	0.0	002	0.00	3	0.0003	0.0002	0.0001
	表 116	ZM21-Z 镁	- 合金样	品测定	- E汇总		单位	: %	
单位	Zn	Mr	n		Si		Fe	Cu	Ni
ZM21-Z 化学值	1.61	0.9	91	0.	018	(0.0065	0.0003	0.0004
中铝郑州院	1.560	0.8	90	0.	015	(0.0074	0.0002	0.0003
国家镁中心	1. 4938	0.92	233	0.	0145	(0.0061	0.0001	0.0002
导弹院	1.581	0.9	03	0.	0157	(0.0085	/	/
国标北京	1.545	0.9	39	0.	014	(0.0048	0.0002	0.0001
上海交大	1.541	0.8	38	0.	0167	0	. 00698	0.0005	0.0002
平均值	1.555	0.90	08	0.	.016		0.0067	0.0003	0.0002
最大值	1.61	0.93	39	0.	.018	,	0.0085	0.0005	0.0004
最小值	1.4938	0.8	38	0.	.014	,	0.0048	0.0001	0.0001
极差	0.1162	0.03	59	0.	.004		0.0037	0.0004	0.0003
表 1	17 ZM21-Z	镁合金样	品测定	实验室	医内极差:	汇总		单位: %	
单位	Zn	Mr	1		Si		Fe	Cu	Ni
中铝郑州院	0.0117	0.02	207	0.	0034	(0.0011	0.0001	0.0001
国家镁中心	0.0264	0.02	235	0.	001	(0.0006	0.0001	0.0001
导弹院	0.018	0.0	05	0.	0047	(0.0005	/	/
国标北京	0.018	0.0	03	0.0	0037		0.0003	0.0001	0.0001
上海交大	0.008	0.0	02	0.	.003		0.0003	0.0002	0.0001
最大极差	0.0264	0.02	235	0.0	0047		0.0011	0.0002	0.0001

3. 6. 2. 6 AS31-Z 镁合金测定

AS31-Z 样品的各复验单位测定结果见表 118-表 122, 各验证单位测定数据汇总见表 123, 各复验单位的实验室内极差数据汇总见表 124。

表 118 导弹院-AS31-7 镁合全样品的多次测定

表 118	导弹院-AS	31-Z 镁合金	全样品的多数	欠测定	单位	: %	
样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AS31Z-1	3. 642	0.130	0.361	0.756	0.0027	/	0.0005
AS31Z-2	3.650	0.132	0. 363	0.759	0.0026	/	0.0004
AS31Z-3	3. 563	0.132	0. 327	0.757	0.0031	/	0.0006
AS31Z-4	3. 552	0.130	0. 328	0.758	0.0031	/	0.0004
AS31Z-5	3. 573	0.129	0. 278	0.751	0.0024	/	0.0007
AS31Z-6	3. 580	0.133	0. 279	0.752	0.0025	/	0.0007
AS31Z-7	3. 581	0.133	0.330	0.746	0.0033	/	0.0004
AS31Z-8	3. 589	0.130	0. 328	0.741	0.0032	/	0.0005
平均值	3. 591	0.131	0. 324	0.753	0.0029	/	0.0005
标准偏差	0. 0357	0.00155	0.0319	0.00635	0.000350	/	0.000128
相对标准偏差	0. 995	1. 184	9.827	0.843	12. 236	/	24. 414
最大值	3. 650	0.133	0.363	0.759	0.0033	/	0.0007
最小值	3. 552	0.129	0. 278	0. 741	0.0024	/	0.0004
极差	0.098	0.004	0.085	0.018	0.0009	/	0.0003
表 119	国家镁中心	AS31-Z 镁合	金样品的多	次测定	单位	Ÿ: %	
样品	Al	Zn	Mn	Si	Fe	Cu	Ni

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AS31-Z-1	3. 4835	0. 1215	0.3089	0.7024	0.0023	0.0001	0.0002
AS31-Z-2	3. 5249	0. 1195	0.3002	0.7144	0.0024	0.0002	0.0002
AS31-Z-3	3. 5541	0. 1288	0. 2515	0. 7038	0.0023	0.0001	0.0002
AS31-Z-4	3. 5048	0.1304	0. 2958	0. 7078	0.0021	0.0001	0.0002
AS31-Z-5	3. 5158	0. 1315	0.3301	0. 7049	0.0022	0.0001	0.0003
AS31-Z-6	3. 5239	0. 1243	0.3068	0.7144	0.0023	0.0001	0.0003
AS31-Z-7	3. 5348	0. 1259	0. 2987	0. 7088	0.0021	0.0002	0.0003
AS31-Z-8	3. 5102	0.1198	0.3098	0.7128	0.0023	0.0002	0.0003
平均值	3. 519	0.125	0.300	0. 70866	0.00225	0.00014	0.00025
标准偏差	0.020	0.004	0.021	0.00448	0.00010	0.00005	0.00005
相对标准偏差	0. 558	3.530	6. 966	0.633	4. 444	35. 209	20.000
最大值	3. 554	0.132	0.330	0. 71440	0.00240	0.00020	0.00030
最小值	3. 484	0.120	0. 252	0. 70240	0.00210	0.00010	0.00020
极差	0.071	0.012	0.079	0.01200	0.00030	0.00010	0.00010

表 120 国标北京-AS31-Z 镁合金样品的多次测定

单位: %

样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AS31-1	3.537	0.135	0.351	0.772	0.0037	0.0019	0.0017
AS31-2	3.542	0.135	0.349	0.771	0.0037	0.0018	0.0017
AS31-3	3.482	0.134	0.309	0.731	0.0031	0.0017	0.0017
AS31-4	3.477	0.135	0.306	0.730	0.0032	0.0017	0.0017

AS31-5	3.508	0.134	0.259	0.729	0.0026	0.0020	0.0018
AS31-6	3.505	0.135	0.259	0.733	0.0024	0.0019	0.0018
AS31-7	3.484	0.135	0.369	0.753	0.0040	0.0019	0.0017
AS31-8	3.489	0.135	0.370	0.752	0.0040	0.0018	0.0018
平均值	3.50	0.135	0.322	0.746	0.0033	0.0018	0.0017
标准偏差	0.025	0.0005	0.045	0.018	0.0006	0.0001	0.0001
相对标准偏差	0.71	0.34	14.13	2.44	18.40	5.77	2.98
最大值	3.542	0.135	0.370	0.772	0.004	0.002	0.0018
最小值	3.477	0.134	0.259	0.729	0.0024	0.0017	0.0017
极差	0.065	0.001	0.111	0.043	0.0016	0.0003	0.0001

表 121 昆明冶金院-AS31-Z 镁合金样品的多次测定

24	12	0/
里	付:	- %

样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AS31Z-1	3.5157	0.1299	0.3552	0.6659	0.0023	\	0.0005
AS31Z-2	3.4992	0.1301	0.3574	0.6702	0.0025	\	0.0005
AS31Z-3	3.5182	0.1303	0.3571	0.6669	0.0024	\	0.0006
AS31Z-4	3.5032	0.13	0.3551	0.6661	0.0027	\	0.0006
AS31Z-5	3.4933	0.1289	0.3567	0.6635	0.0022	\	0.0005
AS31Z-6	3.4771	0.1297	0.3668	0.6622	0.0024	\	0.0005
AS31Z-7	3.4786	0.1295	0.3567	0.6607	0.0025	\	0.0005
AS31Z-8	3.4707	0.1295	0.3567	0.6597	0.0023	\	0.0005
平均值	3.4945	0.1297	0.3577	0.6644	0.0024	\	0.00053
标准偏差	0.0179	0.0004	0.0038	0.0035	0.0002	\	0.00005
相对标准偏差	0.51	0.31	1.06	0.53	8.33	\	9.43
最大值	3.5182	0.1303	0.3668	0.6702	0.0027	\	0.0006
最小值	3.4707	0.1289	0.3551	0.6597	0.0022	\	0.0005
极差	0.0475	0.0014	0.0117	0.0105	0.0005	\	0.0001

表 122 上海交大-AS31 镁合金样品的多次测定

单位: %

样品	A1	Zn	Mn	Si	Fe	Cu	Ni
AS31Z-1#-1	3. 59	0.129	0. 339	0.762	0.0001	0.0001	0.0001
AS31Z-2#-1	3. 55	0.129	0. 299	0. 734	0.0001	0.0001	0.0001
AS31Z-3#-1	3. 58	0.128	0. 252	0. 739	0.0001	0.0001	0.0006
AS31Z-5#-1	3.60	0.130	0. 336	0.806	0.0001	0.0001	0.0001
AS31Z-1#-2	3. 58	0.129	0. 339	0. 766	0.0001	0.0001	0.0001
AS31Z-2#-2	3. 55	0.128	0. 298	0. 735	0.0001	0.0001	0.0001
AS31Z-3#-2	3. 58	0.128	0. 253	0. 742	0.0001	0.0001	0.0006
AS31Z-5#-2	3. 61	0.129	0. 334	0.806	0.0001	0.0001	0.0005
平均值	3. 58	0.129	0.306	0. 761	0.0001	0.0001	0.0003
标准偏差	0.02	0.001	0. 037	0.030	0	0	0.0002
相对标准偏差	0.60	0. 55	12	3.9	0	0	89
最大值	3. 61	0.130	0.339	0.806	0.0001	0.0001	0.0006
最小值	3. 55	0.128	0. 252	0. 734	0.0001	0.0001	0.0001
极差	0.06	0.002	0.087	0.072	0	0	0.0005

表 123 AS31-Z 镁合金样品测定汇总

单位: %

单位	A1	Zn	Mn	Si	Fe	Cu	Ni
AZ31-B 化学值	3.52	0.139	0.316	0.71	0.0029	\	0.0004
中铝郑州院	3. 422	0.127	0. 293	0.694	0.002	\	0.0004
国家镁中心	3. 519	0.125	0.3	0. 70866	0.00325	\	0.00025
导弹院	3. 591	0.131	0.324	0.753	0.0023	\	0.0005
国标北京	3.5	0.135	0.322	0.746	0.0033	\	0.0017
昆明冶金院	3.4945	0.1297	0.3577	0.6644	0.0024	\	0.00053
上海交大	3.58	0.129	0.306	0.761	\	\	0.0003
平均值	3.518	0.129	0.317	0.721	0.0022	\	0.0006
最大值	3.591	0.135	0.3577	0.761	0.0033	\	0.0017
最小值	3.422	0.125	0.293	0.6644	0.0020	\	0.00025
极差	0.169	0.01	0.0647	0.0966	0.0013	\	0.00145

表 124 AS31-Z 镁合金样品测定实验室内极差汇总

单位: %

单位	A1	Zn	Mn	Si	Fe	Cu	Ni
中铝郑州院	0.0532	0.009	0.045	0.012	0.0008	\	0.0001
国家镁中心	0.071	0.012	0.079	0.012	0.0003	\	0.0001
导弹院	0.098	0.004	0.085	0.018	0.0009	\	0.0003
国标北京	0.065	0.001	0.111	0.043	0.0016	\	0.0001
昆明冶金院	0.0475	0.0014	0.0117	0.0105	0.0005	\	0.0001
上海交大	0.06	0.002	0.087	0.072	0	\	0.0005
最大极差	0.098	0.012	0.111	0.072	0.0016	\	0.0005

常规镁合金的 7 个牌号的多家实验室的测定数据表明实验室之间的测定数据相吻合,最大差值在 0.5%以下,参考其他方法的允许差,表明 XRF 方法的可靠性良好,本方法具有广泛适用性。

3.6.3 锌-锆镁合金系列测定

锌-锆镁合金程序测定未知样样品包含 ZnZr1#(2块,铸造),各复验单位测定结果见表 125-表 129,各验证单位测定数据汇总见表 130,各复验单位的实验室内极差数据汇总见表 131。

表 125 导弹院- ZnZr1#-Z 镁合金样品的多次测定

单位: %

样品	Zn	Zr	Mn	Cu	Ni
1	4.830	0.356	0.0164	/	/
2	4.839	0. 357	0.0164	/	/
3	4.886	0.360	0.0170	/	/
4	4.888	0.362	0.0172	/	/
5	4.862	0. 362	0.0173	/	/
6	4.875	0. 362	0.0173	/	/
平均值	4.863	0.360	0.0169	/	/
标准偏差	0.0243	0.00271	0.000427	/	/

相对标准偏差	0.501	0.754	2. 524	/	/
最大值	4. 888	0.362	0.0173	/	/
最小值	4.830	0.356	0.0164	/	/
极差	0.058	0.006	0.0009	/	/
表 126 国家镁中心	ン−ZnZr1#−Z 镁	合金样品的多次	文测定	单位: %	1
样品	Zn	Zr	Mn	Cu	Ni
ZnZr1#-Z-1	4.8213	0.3944	0.0152	0.0002	/
ZnZr1#-Z-2	4.8102	0.3859	0.0149	0.0002	/
ZnZr1#-Z-3	4. 7933	0.3846	0.0148	0.0003	/
ZnZr1#-Z-4	4. 8289	0.3922	0.0145	0.0003	/
ZnZr1#-Z-5	4.8133	0.3814	0.0151	0.0002	/
ZnZr1#-Z-6	4.8189	0.3819	0.015	0.0002	/
平均值	4.814	0.387	0.0149	0.0002	/
标准偏差	0.0111	0.0049	0.0002	0.0000	/
相对标准偏差	0.2310	1. 2743	1.5197	20. 2031	/
最大值	4.8289	0.3944	0.0152	0.0003	/
最小值	4. 7933	0.3814	0.0145	0.0002	/
极差	0.0356	0.013	0.0007	0.0001	/
表 127 国标北京	- ZnZr1#-Z 镁台	- ☆金样品的多次		单位: %	
样品	Zn	Zr	Mn	Cu	Ni
ZnZr1#-Z-1	4.835	0.367	0.0160	0.0001	/
ZnZr1#-Z-2	4.831	0.367	0.0164	0.0002	/
ZnZr1#-Z-3	4.831	0.367	0.0161	0.0001	/
ZnZr1#-Z-4	4.764	0.377	0.0170	0.0001	/
ZnZr1#-Z-5	4.766	0.378	0.0171	0.0001	/
ZnZr1#-Z-6	4.767	0.378	0.0171	0.0002	/
平均值	4.799	0.372	0.0166	0.0001	/
标准偏差	0.0366	0.0059	0.0005	0.0001	/
相对标准偏差	0.76	1.57	3.08	38.73	/
最大值	4.835	0.378	0.0171	0.0002	/
最小值	4.764	0.367	0.016	0.0001	/
极差	0.071	0.011	0.0011	0.0001	/
表 128 昆明冶金网	- 完-ZnZr1#−Z 镁 ⁻	- 合金样品的多次	· 、测定	单位: %	I
样品	Zn	Zr	Mn	Cu	Ni
ZnZr1#-Z-1	4.8541	0.3677	0.0164	\	\
ZnZr1#-Z-2	4.8481	0.3672	0.0167	\	\
ZnZr1#-Z-3	4.8444	0.3674	0.0163	\	\
ZnZr1#-Z-4	4. 7369	0.3777	0.0170	\	\
ZnZr1#-Z-5	4. 721	0.378	0.0171	\	\
ZnZr1#-Z-6	4. 7446	0.3784	0.0173	\	\
平均值	4. 7915	0.3727	0.0168	\	\
标准偏差	0.0634	0.0058	0.0004	\	\
相对标准偏差	1.32	1.56	2. 38	\	\
2					

最大值	4.8541	0.3784	0.0173	\	\
最小值	4. 721	0.3672	0.0163	\	\
极差	0.1331	0.0112	0.001	\	\
表 129 上海交大	-ZnZr1#-Z 镁合	金样品的多次		单位: %	
样品	Zn	Zr	Mn	Cu	Ni
ZnZr1#-Z-1	4. 90	0.357	0.0164	0.0001	0.0001
ZnZr1#-Z-2	4. 90	0.357	0.0164	0.0001	0.0001
ZnZr1#-Z-3	4. 90	0.357	0.0164	0.0001	0.0001
ZnZr1#-Z-4	4. 70	0.367	0.0171	0.0001	0.0001
ZnZr1#-Z-5	4. 72	0.367	0.0169	0.0001	0.0001
ZnZr1#-Z-6	4. 71	0.367	0.0170	0.0001	0.0001
平均值	4.805	0.362	0.0167	0.0001	0.0001
标准偏差	0.09518	0.00500	0.00030	\	\
相对标准偏差	1.981	1. 381	1.796	\	\
最大值	4. 9	0.367	0.017	\	\
最小值	4. 7	0.357	0.0164	\	\
极差	0.2	0.01	0.0006	\	\
表 130 Zni	Zr1#-Z 镁合金 [;]	样品测定汇总	单位	过: %	
单位	Zn	Zr	Mn	Cu	Ni
ZnZr1#化学值	5. 05	0.38	0.018	\	\
中铝郑州院	4.886	0.375	0.0168	\	\
国家镁中心	4.814	0.387	0.0149	\	\
导弹院	4. 863	0.36	0.0169	\	\
国标北京	4.799	0.372	0.0166	\	\
昆明冶金院	4.7915	0.3727	0.0168	\	\
上海交大	4.805	0.362	0.0167	\	\
平均值	4.826	0.371	0.016	\	\
最大值	4.886	0.387	0.0169	\	\
最小值	4.7915	0.36	0.0149	\	\
极差	0.0945	0.027	0.002	\	\
表 131 ZnZr1#-Z	镁合金样品测氮		汇总	单位: %	
单位	Zn	Zr	Mn	Cu	Ni
中铝郑州院	0.124	0.014	0.0012	\	\
国家镁中心	0.0356	0.013	0.0007	\	\
导弹院	0.058	0.006	0.0009	\	\
国标北京	0.071	0.011	0.0011	\	\
昆明冶金院	0.1331	0.0112	0.001	\	\
上海交大	0.2	0.01	0.0006	\	\
最大极差	0.2	0.014	0.0012	\	\

3.6.4 锌-铈镁合金系列测定

锌-铈镁合金程序测定未知样样品包含 ZnCe-7#-B(1块,变形)、ME20-Z(4块,铸 造); 各复验单位测定锌-铈镁合金 ZnCe-7#-1 结果见表 132-表 136, ZnCe-7#-1 的各验证

单位测定数据汇总见表 137, 各复验单位的实验室内极差数据汇总见表 138。

主: 120	巳 鸿 № 70。 7#	R 镁合全样品的多次测完	单位.%

—————————————————————————————————————	半世: 70		
样品	Zn	Се	Mn
ZnCe-7#-1	4.334	3. 270	0. 0172
ZnCe-7#-2	4. 335	3. 272	0. 0170
ZnCe-7#-3	4. 334	3. 269	0.0170
ZnCe-7#-4	4. 332	3. 272	0. 0169
平均值	4. 334	3. 271	0.0170
标准偏差	0. 00126	0.00150	0.000126
相对标准偏差	0.029	0. 046	0.739
最大值	4. 335	3. 272	0. 0172
最小值	4. 332	3. 269	0. 0169
极差	0.003	0.003	0.0003
表 133 国家镁中心-ZnCe-7#-B 镁行	 次测定	单位: %	
	1 1		

样品	Zn	Се	Mn
ZnCe-7#-B-1	4. 4218	3.3421	0.0156
ZnCe-7#-B-2	4.4198	3. 2901	0.0154
ZnCe-7#-B-3	4. 4933	3. 3198	0.0152
ZnCe-7#-B-4	4. 4289	3.3097	0.0159
平均值	4.4410	3. 3154	0.0155
标准偏差	0.03512	0. 02164	0.00030
相对标准偏差	0.7908	0.6527	1.9234
最大值	4. 4933	3. 3421	0.0159
最小值	4. 4198	3. 2901	0.0152
极差	0.0735	0.052	0.0007

表 134 国标北京-ZnCe-7#-B 镁合金样品的多次测定 单位: %

样品	Zn	Се	Mn
ZnCe-7#-1	4.421	3.286	0.0164
ZnCe-7#-2	4.423	3.284	0.0168
ZnCe-7#-3	4.426	3.268	0.0166
ZnCe-7#-4	4.422	3.278	0.0166
平均值	4.423	3.279	0.0166
标准偏差	0.0022	0.0081	0.0002
相对标准偏差	0.049	0.25	1.20
最大值	4.426	3.286	0.0168
最小值	4.421	3.268	0.0164
极差	0.005	0.018	0.0004

表 135 昆明冶金院-ZnCe-7#-B 镁合金样品的多次测定 单位: %

样品	Zn	Се	Mn
ZnCe-7#-1	4.2129	3.2402	0.017
ZnCe-7#-2	4.2197	3.2342	0.0166

			I
ZnCe-7#-3	4. 2171	3. 2392	0.0167
ZnCe-7#-4	4. 2207	3. 2388	0.0171
平均值	4.2176	3. 2381	0.0169
标准偏差	0.0035	0.0027	0.0002
相对标准偏差	0.083	0.0834	1.1834
最大值	4. 2207	3. 2402	0.0171
最小值	4. 2129	3. 2342	0.0166
极差	0.0078	0.006	0.0005
表 136 上海交大-ZnCe-7#-B 镁合	金样品的多次	:测定	单位: %
样品	Zn	Се	Mn
ZnCe-7#-1	4.461	3.286	0.0164
ZnCe-7#-2	4.463	3.284	0.0168
ZnCe-7#-3	4.466	3.268	0.0166
ZnCe-7#-4	4.462	3.278	0.0166
平均值	4.463	3.279	0.017
标准偏差	0.00187	0.00700	0.00014
相对标准偏差	0.042	0.213	0.852
最大值	4.466	3.286	0.017
最小值	4.461	3.268	0.016
极差	0.00500	0.01800	0.00040
表 137 ZnCe-7#-B 镁合金柱	- - - - - - - - - - - - - - - - - - -		₩: %
单位	Zn	Се	Mn
ZnCe-7#-B 化学值	4. 47	3. 198	0.017
中铝郑州院	4.363	3. 281	0.0171
国家镁中心	4. 441	3. 3154	0.0155
导弹院	4.334	3. 271	0.017
国标北京	4.423	3.279	0.0166
昆明冶金院	4.2176	3.2381	0.0169
上海交大	4.463	3. 278	0.017
平均值	4.373	3.277	0.017
最大值	4.463	3.3154	0.0171
最小值	4.2176	3.2381	0.0155
极差	0.2454	0.0773	0.0016
表 138 ZnCe-7#-B 镁合金样品	测定实验室内	极差汇总	单位: %
单位	Zn	Се	Mn
中铝郑州院	0.028	0.011	0.0003
国家镁中心	0.0735	0.052	0.0007
导弹院	0.003	0.003	0.0003
国标北京	0.005	0.018	0.0004
昆明冶金院	0.0078	0.006	0.0005
上海交大	0	0.01	0
最大极差	0.0735	0.052	0.0007
取入恢左	0.0733	0.032	0.0007

各复验单位测定锌-铈镁合金 ME20-Z 结果见表 139-表 142, ME20#的各验证单位测定数

据汇总见表 143, 各复验单位的实验室内极差数据汇总见表 144。由于 ME20-Z 为锰-铈镁合金,其中不含锌,测定中均未测定锌元素。

表 139 导弹院-ME20-Z 镁合金样品的多次测定 单位: %

Zn	Се	Mn
/	0.310	1. 708
/	0.310	1. 709
/	0.312	1. 711
/	0.312	1.710
/	0.310	1.713
/	0.312	1.713
/	0.311	1.711
/	0.312	1.713
/	0.311	1.711
/	0.00099	0.0019
/	0.319	0. 113
/	0.312	1.711
/	0.310	1.708
/	0.002	0.003
	/ / / / / /	/ 0.310 / 0.310 / 0.312 / 0.312 / 0.312 / 0.312 / 0.311 / 0.312 / 0.311 / 0.319 / 0.312 / 0.319 / 0.310

表 140 国家镁中心-ME20-Z 镁合金样品的多次测定 单位: %

样品	Zn	Се	Mn
ME20-#-1		0.3215	1.6031
ME20-#-2		0.3082	1.6152
ME20-#-3		0.3249	1.6123
ME20-#-4		0.3115	1.6204
ME20-#-5		0.3102	1.6197
ME20-#-6		0.3288	1.6055
ME20-#-7		0.3205	1.6244
ME20-#-8		0.3188	1.6187
平均值		0.3181	1.6149
标准偏差		0.00739	0. 00749
相对标准偏差		2. 3242	0.4636
最大值		0.3288	1.6244
最小值		0.3082	1.6031
极差		0.0206	0.0213

表 141 国标北京/昆明冶金院-ME20-Z 镁合金样品的多次测定 单位: %

国标北京	Zn	Се	Mn
ME20-1		0.341	1.783
ME20-2		0. 339	1.785
ME20-3		0.340	1.782
ME20-4		0.341	1.782
ME20-5		0. 337	1.778

			T
ME20-6		0. 338	1.780
ME20-7		0. 341	1.779
ME20-8		0. 342	1.781
平均值		0.340	1.781
标准偏差		0.0017	0.0023
相对标准偏差		0.51	0.13
最大值		0. 342	1.785
最小值		0. 337	1.778
极差		0.005	0.007
昆明冶金院	Zn	Се	Mn
AE20-1#	\	0. 375	1. 7113
AE20-1#	\	0. 3759	1. 7168
AE20-2#	\	0. 3781	1. 7437
AE20-2#	\	0. 3803	1. 7383
AE20-3#	\	0. 3757	1. 7265
AE20-3#	\	0. 3767	1. 7226
AE20-4#	\	0. 3776	1. 7153
AE20-4#	\	0. 3762	1. 7219
平均值	\	0. 3766	1. 7216
标准偏差	\	0.0008	0.0046
相对标准偏差	\	0. 2124	0. 2672
最大值	\	0. 3803	1.7437
最小值	\	0. 375	1.7113
极差	\	0.0053	0.0324
表 142 上海交大-ME20-Z 镁合金	全样品的多次测	別定	单位: %
样品	Zn	Се	Mn
ME20-1	\	0.336	1.687
ME20-2	\	0.335	1.689
ME20-3	\	0.337	1.681
ME20-4	\	0.334	1.686
ME20-5	\	0.339	1.681
ME20-6	\	0.337	1.687
ME20-7	\	0.337	1.687
ME20-8	\	0.336	1.687
平均值	\	0.336	1.686
最大值	\	0.339	1.689
最小值	\	0.334	1.681
极差	\	0.005	0.008
表 143 ME20-Z 镁合金样	品测定汇总	单位	: %
单位	Zn	Се	Mn
ME20-Z 化学值		0. 28	1.74
中铝郑州院		0.314	1.714
国家镁中心		0.3181	1.6149

导弹院	/	0.311	1.711
国标北京		0.340	1.781
昆明冶金院	\	0.3766	1.7216
上海交大		0.336	1.686
平均值		0.333	1.705
最大值		0.3766	1.781
最小值		0.311	1.6149
极差		0.0656	0.1661

表 144 ME20-Z 镁合金样品测定实验室内极差汇总 单位: %

单位	Zn	Се	Mn
中铝郑州院		0.010	0.030
国家镁中心		0.0206	0.0213
导弹院	/	0.002	0.003
国标北京		0.005	0.007
昆明冶金院	\	0.0053	0.0324
上海交大		0.005	0.008
最大极差		0.0206	0.0324

3.6.5 锌-钇-铜-铝镁合金系列

锌-钇-铜-铝镁合金系列的未知样样品包含 ZnY-3-B (1 块,变形),ZA-73M-Z (3 块,铸态),ZA-53D-Z (3 块,铸态);各复验单位测定 ZnY-3-B 的结果见表 145-表 149,ZnY-3-B 的各验证单位测定数据汇总见表 150,各复验单位的实验室内极差数据汇总见表 151。

表 145 导弹院-ZnY-3-B 镁合金样品的多次测定 单位: %

样品	Zn	Y	Cu	A1	Mn
ZnY-3-B-1	3. 861	0.807	2. 739	/	0. 424
ZnY-3-B-2	3. 863	0.807	2. 738	/	0. 424
ZnY-3-B-3	3. 869	0.810	2.742	/	0. 426
ZnY-3-B-4	3. 874	0.816	2. 741	/	0. 426
平均值	3. 867	0.810	2. 74	/	0. 425
标准偏差	0. 00591	0.00424	0.00183	/	0.00115
相对标准偏差	0. 153	0. 524	0.067	/	0. 272
最大值	3. 874	0.816	2.742	/	0. 426
最小值	3. 861	0.807	2. 738	/	0. 424
极差	0.013	0.009	0.0040	/	0.002

表 146 国家镁中心-ZnY-3-B 镁合金样品的多次测定 单位: %

样品	Zn	Y	Cu	A1	Mn
ZnY-3-B-1	3.7435	0.8145	2.9722		0. 4568
ZnY-3-B-2	3.7214	0.8072	2.9048		0. 4692
ZnY-3-B-3	3.7354	0.8155	2.9469		0. 4655
ZnY-3-B-4	3.7325	0.8081	2.9331		0. 4621
平均值	3.7332	0.8113	2.9393		0. 4634
标准偏差	0.00914	0.00428	0.02810		0.00527

相对标准偏差	0. 2449	0. 5274	0.9560		1. 1371
最大值	3. 7435	0.8155	2.9722		0. 4692
最小值	3. 7214	0.8072	2.9048		0. 4568
极差	0.0221	0.0083	0.0674		0.0124
表 147 国标北京	京 - ZnY-3-B 镁1	合金样品的多次	测定	单位: %	
样品	Zn	Y	Cu	Al	Mn
ZnY-3-B-1	3.980	0.896	2.900		0.425
ZnY-3-B-2	3.975	0.895	2.901		0.426
ZnY-3-B-3	3.975	0.895	2.898		0.426
ZnY-3-B-4	3.976	0.896	2.902		0.426
平均值	3.977	0.896	2.900		0.426
标准偏差	0.002	0.001	0.002		0.001
相对标准偏差	0.060	0.064	0.059		0.117
最大值	3.980	0.896	2.902		0.426
最小值	3.975	0.895	2.898		0.425
极差	0.005	0.001	0.004		0.001
表 148 昆明冶金	院-ZnY-3-B 镁	合金样品的多次	大测定	单位: %	
样品	Zn	Y	Cu	A1	Mn
ZnY-3-B-1	3.973	0.875	2. 881		0.427
ZnY-3-B-2	3.974	0.876	2. 887		0.427
ZnY-3-B-3	3. 972	0.875	2. 885		0.426
ZnY-3-B-4	3. 975	0.879	2. 888		0.427
平均值	3. 9735	0.8763	2. 8853		0. 4268
标准偏差	0.0013	0.0019	0.0031		0.0005
相对标准偏差	0.03	0. 22	0.11		0. 12
最大值	3.975	0.879	2. 888		0.427
最小值	3. 972	0.875	2. 881		0.426
极差	0.003	0.004	0.007		0.001
	<u> </u>		 测定	单位: %	
样品	Zn	A A L HUHA A A C	Cu	A1	Mn
ZnY-3-B-1	3. 74	0.843	2. 76		0.418
ZnY-3-B-2	3. 72	0.842	2.74		0.418
ZnY-3-B-3	3. 77	0.849	2. 79		0. 420
ZnY-3-B-4	3. 73	0.843	2. 75		0.418
平均值	3. 74	0.844	2.76		0.419
标准偏差	0.02	0.003	0.02		0.001
相对标准偏差	0.48	0.388	0.77		0.24
最大值	3. 77	0.849	2. 79		0.420
最小值	3. 72	0.842	2. 74		0.418
极差	0.04	0.007	0.05		0.002
表 150 Zi	nY-3-B 镁合金	 样品测定汇总	· 单	位: %	
单位	Zn	Y	Cu	A1	Mn
					I .

ZnY-3-B 化学值	4.03	0.85	2.96	 0.42
中铝郑州院	3. 936	0.879	2. 932	 0.415
国家镁中心	3. 7332	0.8113	2. 9393	 0.4634
导弹院	3. 867	0.810	2.74	 0. 425
国标北京	3.977	0.896	2.900	 0.426
昆明冶金院	3. 9735	0.8763	2. 8853	 0.4268
上海交大	3. 74	0.844	2.76	 0.419
平均值	3.871	0.853	2.859	 0.429
最大值	3.977	0.896	2.9393	 0.4634
最小值	3.7332	0.81	2.74	0.415
极差	0.2438	0.086	0.1993	 0.0484

表 151 ZnY-3-B 镁合金样品测定实验室内极差汇总 单位: %

单位	Zn	Y	Cu	A1	Mn
中铝郑州院	0.053	0.007	0.017		0.004
国家镁中心	0.0221	0.0083	0.0674		0.0124
导弹院	0.013	0.009	0.0040		0.002
国标北京	0.005	0.001	0.004		0.001
昆明冶金院	0.003	0.004	0.007		0.001
上海交大	0.04	0.007	0.05		0.002
最大极差	0.053	0.009	0.0674		0.0124

各复验单位测定 ZA-73M-Z 的结果见表 152-表 156, ZA-73M-Z 的各验证单位测定数据汇总见表 157, 各复验单位的实验室内极差数据汇总见表 158。

表 152 导弹院-ZA-73M-Z 镁合金样品的多次测定 单位: %

样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1 (程序 1)	7.613	/	/	2. 974	/
ZA-73M-Z-2 (程序 1)	7.612	/	/	2. 968	/
ZA-73M-Z-3 (程序 1)	7. 597	/	/	3. 008	/
ZA-73M-Z-4 (程序 1)	7. 587	/	/	3. 011	/
ZA-73M-Z-5 (程序 1)	7. 659	/	/	3. 004	/
ZA-73M-Z-6 (程序 1)	7. 651	/	/	3. 018	/
平均值	7.620	/	/	2. 997	/
样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1 (程序 2)	7. 491	/	/	2. 975	/
ZA-73M-Z-2 (程序 2)	7. 490	/	/	2. 977	/
ZA-73M-Z-3 (程序 2)	7. 540	/	/	2. 936	/
ZA-73M-Z-4 (程序 2)	7. 540	/	/	2. 938	/
ZA-73M-Z-5 (程序 2)	7. 523	/	/	3. 006	/
ZA-73M-Z-6 (程序 2)	7. 522	/	/	3. 004	/
平均值	7. 518	/	/	2. 973	/
双程序-平均值	7. 569	/	/	2. 985	/
标准偏差	0.0588	/	/	0. 0280	/

相对标准偏差	0.777	/	/	0. 939	/
最大值	7. 659	/	/	3. 018	/
最小值	7. 490	/	/	2. 936	/
极差	0. 169	/	/	0. 082	/
		,	左狐 ⇔	单位: %	/
样品	心-ZA-73M-Z 镁	百並件前的多位 Y			Mrs
	Zn	Y	Cu	Al	Mn
ZA-73M-Z-1 (程序1)	7. 3189			2. 9692	
ZA-73M-Z-2 (程序 1)	7. 3287			2. 8621	
ZA-73M-Z-3 (程序 1)	7. 3994			2. 8627	
ZA-73M-Z-4 (程序 1)	7. 3568			2.8839	
ZA-73M-Z-5 (程序 1)	7. 3456			2. 9856	
ZA-73M-Z-6 (程序 1)	7. 3578			2. 9792	
平均值	7. 3512			2. 9238	
标准偏差	0.02821			0.06014	
相对标准偏差	0. 3837			2.0568	
最大值	7. 3994			2. 9856	
最小值	7. 3189			2.8621	
极差	0.0805			0.1235	
样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1(程序 2)	7.3369	——		2.9554	
ZA-73M-Z-2(程序 2)	7.3064			2.9335	
ZA-73M-Z-3(程序 2)	7.3051			2.9235	
ZA-73M-Z-4 (程序 2)	7.3241			2.9482	
ZA-73M-Z-5(程序 2)	7.3135			2.9314	
ZA-73M-Z-6 (程序 2)	7.3155			2.9329	
平均值	7.3169			2.9375	
标准偏差	0.01196			0.01188	
相对标准偏差	0.1634			0.4043	
最大值	7. 3369			2. 9554	
最小值	7. 3051			2. 9235	
极差	0.0318			0.0319	
表 154 国标北京	- 京-ZA-73M-Z 镁↑	- 合金样品的多次	· :测定	单位: %	
样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1 (程序 1)	7. 215			2. 923	
ZA-73M-Z-2 (程序 1)	7. 216			2.916	
ZA-73M-Z-3 (程序 1)	7. 300			3. 029	
ZA-73M-Z-4 (程序 1)	7. 302			3. 027	
ZA-73M-Z-5 (程序 1)	7. 243			2. 928	
ZA-73M-Z-6 (程序1)	7. 249			2.927	

Y

Cu

2.958

A1

2.91

2.908

Mn

7. 254

Zn

7.243

7.24

平均值

样品

ZA-73M-Z-1 (程序 2)

ZA-73M-Z-2 (程序 2)

ZA-73M-Z-3 (程序 2)	7. 339	 	3.022	
ZA-73M-Z-4 (程序 2)	7. 338	 	3.014	——
ZA-73M-Z-5 (程序 2)	7. 291	 	2.908	——
ZA-73M-Z-6 (程序 2)	7. 275	 	2.903	
平均值	7. 288	 	2.944	
双程序-平均值	7. 271	 	2.951	
最大值	7. 339	 	3.029	
最小值	7. 215	 	2.903	
极差	0. 124	 	0.126	

表 155 昆明冶金院-ZA-73M-Z 镁合金样品的多次测定

单位: %

样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1 (程序 1)	7. 235			2.851	
ZA-73M-Z-2 (程序 1)	7. 168			2.835	
ZA-73M-Z-3 (程序1)	7. 181			2.855	
ZA-73M-Z-4 (程序1)	7. 154			2.852	
ZA-73M-Z-5 (程序1)	7. 230			2.834	
ZA-73M-Z-6 (程序1)	7. 220			2. 846	
平均值	7. 198			2.8455	
标准偏差	0.0346			0.009	
相对标准偏差	0.48			0.32	
最大值	7. 235			2.855	
最小值	7. 154			2.834	
极差	0.081			0.021	
样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1 (程序 2)	7. 1361			3. 0299	
ZA-73M-Z-2 (程序 2)	7. 1106			3.0166	
ZA-73M-Z-3 (程序 2)	7. 0952			3.0162	
ZA-73M-Z-4 (程序 2)	7. 1014			3.0234	
ZA-73M-Z-5 (程序 2)	7. 1034			3.0164	
ZA-73M-Z-6 (程序 2)	7. 0958			3.0205	
平均值	7. 107		——	3. 021	
标准偏差	0.014			0.005	——
相对标准偏差	0. 196			0.164	
最大值	7. 136			3.030	
最小值	7. 095			3.016	
极差	0.041			0.014	

表 156 上海交大-ZA-73M-Z 镁合金样品的多次测定

样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1 (程序 1)	7. 382	——		2.960	——
ZA-73M-Z-2 (程序 1)	7. 439	——		2.990	——
ZA-73M-Z-3 (程序1)	7. 436			2.990	——
ZA-73M-Z-4 (程序 1)	7. 391			2.980	
ZA-73M-Z-5 (程序1)	7. 449			3.000	——

ZA-73M-Z-6 (程序 1)	7. 454			2.990	
平均值	7. 425			2.985	
样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1 (程序 2)	7. 290			2. 981	
ZA-73M-Z-2 (程序 2)	7. 330			3.012	
ZA-73M-Z-3 (程序 2)	7. 320			3.000	
ZA-73M-Z-4 (程序 2)	7. 270			2.980	
ZA-73M-Z-5 (程序 2)	7. 330			3.010	
ZA-73M-Z-6 (程序 2)	7. 330			2.997	
平均值	7. 312			2.997	
双程序-平均值	7. 3684			2.9908	
最大值	7. 454			3.012	
最小值	7. 27			2.96	
极差	0. 184			0.052	
表 157 ZA-73M-Z 4	美合全样品测定	双程序平均值》	仁总	単位・	0/0

表 157 ZA-73M-Z 镁合金样品测定双程序平均值汇总

单位: %

单位	Zn	Y	Cu	A1	Mn
ZA-73M-Z 化学值	7.37			3.05	
中铝郑州院	7.347			2.889	
国家镁中心	7. 3340	——	——	2. 9306	
导弹院	7. 569	/	/	2. 985	/
国标北京	7. 271			2.951	
昆明冶金院	7.152			2.9332	
上海交大	7. 3684			2. 9908	
平均值	7. 347			2.955	
最大值	7. 597			2.995	
最小值	7. 154			2.879	
极差	0.443			0.116	

表 158 ZA-73M-Z 镁合金样品测定实验室内极差汇总

单位: %

单位	Zn	Y	Cu	A1	Mn
中铝郑州院	0.119			0.038	
国家镁中心	0.0805			0. 1235	
导弹院	0. 169			0.082	
国标北京	0.124			0.126	
昆明冶金院	0.081			0.196	——
上海交大	0.184			0.052	
最大极差	0.184			0.196	

各复验单位测定 ZA-53D-Z 的结果见表 159-表 163,ZA-53D-Z 的各验证单位测定数据 汇总见表 164。

表 159 导弹院-ZA-53D-Z 镁合金样品的多次测定 单位: %

样品	Zn	Y	Cu	A1	Mn
ZA-53D-Z-1 (程序 1)	5. 568	/	/	2. 510	/
ZA-53D-Z-2 (程序 1)	5. 570	/	/	2. 515	/

ZA-53D-Z-3 (程序1)	5. 618	/	/	2. 482	/
ZA-53D-Z-4 (程序 1)	5. 615	/	/	2. 488	/
ZA-53D-Z-5 (程序 1)	5. 46	/	/	2. 413	/
ZA-53D-Z-6 (程序 1)	5. 438	/	/	2. 416	/
平均值	5. 545	/	/	2. 471	/
样品	Zn	Y	Cu	A1	Mn
ZA-53D-Z-1 (程序 2)	5. 589	/	/	2. 547	/
ZA-53D-Z-2 (程序 2)	5. 588	/	/	2. 547	/
ZA-53D-Z-3 (程序 2)	5. 582	/	/	2. 502	/
ZA-53D-Z-4 (程序 2)	5. 580	/	/	2. 503	/
ZA-53D-Z-5 (程序 2)	5. 471	/	/	2. 407	/
ZA-53D-Z-6 (程序 2)	5. 472	/	/	2. 410	/
平均值	5. 547	/	/	2. 486	/
双程序-平均值	5. 546	/	/	2. 478	/
标准偏差	0.0655	/	/	0. 0531	/
相对标准偏差	1. 182	/	/	2. 141	/
最大值	5. 618	/	/	2. 547	/
最小值	5. 438	/	/	2. 107	/
极差	0. 150	/	/	0. 140	/

表 160 国家镁中心-ZA-53D-Z 镁合金样品的多次测定

					<u> </u>			
表 160 国家镁中心-ZA-53D-Z 镁合金样品的多次测定 单位: %								
样品	Zn	Y	Cu	Al	Mn			
ZA-53D-Z-1 (程序 1)	5. 4548			2. 4254				
ZA-53D-Z-2 (程序 1)	5. 3912			2. 4244				
ZA-53D-Z-3 (程序 1)	5. 4214			2. 3612				
ZA-53D-Z-4 (程序 1)	5. 4521			2. 4378				
ZA-53D-Z-5 (程序 1)	5. 4121			2. 3998				
ZA-53D-Z-6 (程序 1)	5. 4214			2. 4102				
平均值	5. 4255			2. 4098				
标准偏差	0. 02431			0. 02721				
相对标准偏差	0. 4481			1. 1292				
最大值	5. 4548			2. 4378				
最小值	5. 3912			2. 3612				
极差	0.0636			0.0766				
样品	Zn	Y	Cu	Al	Mn			
ZA-53D-Z-1 (程序 2)	5.2934			2.4457				
ZA-53D-Z-2 (程序 2)	5.2959			2.4856				
ZA-53D-Z-3(程序 2)	5.3287			2.4146				
ZA-53D-Z-4(程序 2)	5.3143			2.4524	——			
ZA-53D-Z-5(程序 2)	5.4086			2.4410				
ZA-53D-Z-6 (程序 2)	5.4495			2.4359				
平均值	5.3484			2.4459				
标准偏差	0.06508			0.02333				

相对标准偏差	1.2168	 	0.9540	
最大值	5. 4495	 ——	2. 4856	——
最小值	5. 2934	 	2. 4146	
极差	0. 1561	 	0.071	

表 161 国标北京-ZA-53D-Z 镁合金样品的多次测定 单位: %

样品	Zn	Y	Cu	Al	Mn
ZA-53D-Z-1 (程序 1)	5.426			2.560	
ZA-53D-Z-2 (程序 1)	5.429			2.563	
ZA-53D-Z-3(程序 1)	5.296			2.504	
ZA-53D-Z-4(程序 1)	5.299			2.510	
ZA-53D-Z-5(程序 1)	5.178			2.492	
ZA-53D-Z-6 (程序 1)	5.178			2.496	
平均值	5.301			2.521	
标准偏差	0.11			0.032	
相对标准偏差	2.11			1.27	
最大值	5.429			2.563	
最小值	5.178			2.492	
极差	0.251			0.071	
样品	Zn	Y	Cu	Al	Mn
TIHH	ZII	1	Cu	7 11	17111
ZA-53D-Z-1 (程序 2)	5.514		——	2.563	
ZA-53D-Z-1 (程序 2)	5.514			2.563	
ZA-53D-Z-1 (程序 2) ZA-53D-Z-2 (程序 2)	5.514 5.523		——————————————————————————————————————	2.563 2.559	
ZA-53D-Z-1 (程序 2) ZA-53D-Z-2 (程序 2) ZA-53D-Z-3 (程序 2)	5.514 5.523 5.325		——————————————————————————————————————	2.563 2.559 2.491	
ZA-53D-Z-1 (程序 2) ZA-53D-Z-2 (程序 2) ZA-53D-Z-3 (程序 2) ZA-53D-Z-4 (程序 2)	5.514 5.523 5.325 5.328		——————————————————————————————————————	2.563 2.559 2.491 2.490	
ZA-53D-Z-1 (程序 2) ZA-53D-Z-2 (程序 2) ZA-53D-Z-3 (程序 2) ZA-53D-Z-4 (程序 2) ZA-53D-Z-5 (程序 2)	5.514 5.523 5.325 5.328 5.194	——————————————————————————————————————	——————————————————————————————————————	2.563 2.559 2.491 2.490 2.476	
ZA-53D-Z-1 (程序 2) ZA-53D-Z-2 (程序 2) ZA-53D-Z-3 (程序 2) ZA-53D-Z-4 (程序 2) ZA-53D-Z-5 (程序 2) ZA-53D-Z-6 (程序 2)	5.514 5.523 5.325 5.328 5.194 5.198	——————————————————————————————————————	——————————————————————————————————————	2.563 2.559 2.491 2.490 2.476 2.478	
ZA-53D-Z-1 (程序 2) ZA-53D-Z-2 (程序 2) ZA-53D-Z-3 (程序 2) ZA-53D-Z-4 (程序 2) ZA-53D-Z-5 (程序 2) ZA-53D-Z-6 (程序 2) 平均值	5.514 5.523 5.325 5.328 5.194 5.198 5.347			2.563 2.559 2.491 2.490 2.476 2.478 2.510	
ZA-53D-Z-1 (程序 2) ZA-53D-Z-2 (程序 2) ZA-53D-Z-3 (程序 2) ZA-53D-Z-4 (程序 2) ZA-53D-Z-5 (程序 2) ZA-53D-Z-6 (程序 2) 平均值 标准偏差	5.514 5.523 5.325 5.328 5.194 5.198 5.347 0.145		——————————————————————————————————————	2.563 2.559 2.491 2.490 2.476 2.478 2.510 0.040	
ZA-53D-Z-1 (程序 2) ZA-53D-Z-2 (程序 2) ZA-53D-Z-3 (程序 2) ZA-53D-Z-4 (程序 2) ZA-53D-Z-6 (程序 2) 平均值 标准偏差 相对标准偏差	5.514 5.523 5.325 5.328 5.194 5.198 5.347 0.145 2.71			2.563 2.559 2.491 2.490 2.476 2.478 2.510 0.040 1.61	

表 162 昆明冶金院-ZA-53D-Z 镁合金样品的多次测定 单位: %

样品	Zn	Y	Cu	A1	Mn
ZA-53D-Z-1 (程序 1)	5.449			2.513	
ZA-53D-Z-2 (程序 1)	5.369			2.488	
ZA-53D-Z-3(程序 1)	5.378			2.397	
ZA-53D-Z-4(程序 1)	5.433			2.424	
ZA-53D-Z-5 (程序 1)	5.441			2.495	
ZA-53D-Z-6 (程序 1)	5.439			2.461	
平均值	5.4182			2.463	
标准偏差	0.0351			0.0448	
相对标准偏差	0.65			1.82	
最大值	5.449			2.513	

最小值	5.369			2.397	
极差	0.08			0.116	
样品	Zn	Y	Cu	A1	Mn
ZA-53D-Z-1 (程序 2)	5.4251			2.7876	——
ZA-53D-Z-2 (程序 2)	5.2616			2.736	——
ZA-53D-Z-3 (程序 2)	5.3606			2.6474	——
ZA-53D-Z-4 (程序 2)	5.3571			2.7313	——
ZA-53D-Z-5 (程序 2)	5.2835			2.705	——
ZA-53D-Z-6 (程序 2)	5.3548			2.6906	——
平均值	5.3405			2.7163	——
标准偏差	0.0592			0.0474	
相对标准偏差	1.11			1.75	
最大值	5.4251			2.7876	——
最小值	5.2616			2.6474	——
极差	0.1635			0.1402	

表 163 上海交大-ZA-53D-Z 镁合金样品的多次测定 单位: %

样品	Zn	Y	Cu	A1	Mn
ZA-53D-Z-1 (程序1)	5. 560			2. 580	
ZA-53D-Z-2 (程序1)	5. 518			2. 580	
ZA-53D-Z-3 (程序1)	5. 195			2. 480	
ZA-53D-Z-4 (程序1)	5. 611			2. 590	
ZA-53D-Z-5 (程序1)	5. 621			2.610	
ZA-53D-Z-6 (程序 1)	5. 177			2. 480	
平均值	5. 447			2. 553	
ZA-53D-Z-1 (程序2)	5. 620			2. 635	
ZA-53D-Z-2 (程序 2)	5. 380			2. 581	
ZA-53D-Z-3 (程序2)	5.050			2. 482	
ZA-53D-Z-4 (程序2)	5. 470			2. 601	
ZA-53D-Z-5 (程序2)	5. 480			2. 617	
ZA-53D-Z-6 (程序 2)	5.050			2. 481	
平均值	5. 342			2. 566	
双程序-平均值	5. 3943			2. 5598	
最大值	5. 621			2.635	
最小值	5.05			2.48	
极差	0. 571			0. 155	

表 164 ZA-53D-Z 镁合金样品测定双程序平均值汇总

单位:	%
-----	---

单位	Zn	Y	Cu	A1	Mn
ZA-53D-Z 化学值	5. 606			2.64	
中铝郑州院	5. 376			2. 449	
国家镁中心	5.3870			2.4278	
导弹院	5. 547			2. 486	
国标北京	5. 324			2.515	

昆明冶金院	5. 3793	 	2. 589	
上海交大	5. 3943	 	2. 5598	
平均值	5.401	 	2.504	
最大值	5.547	 	2.589	
最小值	5.324	 	2.4278	
极差	0.223	 	0.1612	

表 165 ZA-53D-Z 镁合金样品测定实验室内极差汇总

单位: %

单位	Zn	Y	Cu	A1	Mn
中铝郑州院	0.162			0.066	——
国家镁中心	0. 1614	——	——	0. 1244	——
导弹院	0.150	/	/	0.140	/
国标北京	0.345			0.087	——
昆明冶金院	0.187			0.3906	
上海交大	0.571			0.155	
最大极差	0.187			0.140	

注: 昆明冶金、国标北京、上海交大的数据表明 ZA-53D-Z 三块样品偏析严重,表 165 中的最大极差主要是因为不同样品块偏析不均匀所致,因此昆明冶金、国标北京、上海交大的极差数据不作为统计数据之用。

3.6.6 镁-钕合金系列

镁-钕合金系列的未知样样品包含 Nd-B-C (2 块,变形); 各复验单位测定 Nd-B-C 的结果见表 166-表 170, Nd-B-C 的各验证单位测定数据汇总见表 171, 各复验单位的实验室内极差数据汇总见表 172。

表 166 导弹院-Nd-B-C 镁合金样品的多次测定 单位: %

样品	Nd
Nd-B-C-1	2. 132
Nd-B-C-2	2. 131
Nd-B-C-3	2. 138
Nd-B-C-4	2. 130
Nd-B-C-5	2. 132
Nd-B-C-6	2. 134
平均值	2. 133
标准偏差	0.00286
相对标准偏差	0. 134
最大值	2. 138
最小值	2. 130
极差	0.008

表 167 国家镁中心-Nd-B-Cu 镁合金样品的多次测定

单位:

样品	Nd
Nd-B-C-1	2. 0179
Nd-B-C-2	2.0014

Nd-B-C-3	1. 9897	
Nd-B-C-4	2. 0148	
Nd-B-C-5	2. 0145	
Nd-B-C-6	1. 9823	
平均值	2. 0034	
标准偏差	0. 01483	
相对标准偏差	0.7405	
最大值	2. 0179	
最小值	1. 9823	
极差	0.0356	
表 168 国标北京-Nd-B-C 镁合金	样品的多次测定 单位:%	
样品	Nd	
Nd-B-C-1	2.179	
Nd-B-C-2	2.180	
Nd-B-C-3	2.182	
Nd-B-C-4	2.181	
Nd-B-C-5	2.180	
Nd-B-C-6	2.181	
平均值	2.181	
标准偏差	0.0010	
相对标准偏差	0.048	
最大值	2.182	
最小值	2.179	
极差	0.003	
表 169 昆明冶金院-Nd-B-C 镁合:	金样品的多次测定 单位:%	
样品	Nd	
Nd-B-C-1	2. 1858	
Nd-B-C-2	2. 2223	
Nd-B-C-3	2. 1893	
Nd-B-C-4	2. 1892	
Nd-B-C-5	2. 2233	
Nd-B-C-6	2. 2248	
平均值	2. 2058	
标准偏差	0.0194	
相对标准偏差	0.88	
最大值	2. 2248	
最小值	2. 1858	
极差	0. 039	
表 170 上海交大-Nd-B-C 镁合金样品的多次测定 单位: %		
样品新编号	Nd	

Nd-1#-1	2.14
Nd-2#-1	2. 15
Nd-1#-2	2. 15
Nd-2#-2	2.14
Nd-1#-3	2.14
Nd-2#-3	2.14
平均值	2.14
标准偏差	0.01
相对标准偏差	0.30
最大值	2. 15
最小值	2.14
极差	0.01
表 171 Nd-B-C 镁合金样品测	

表 171 Nd-B-C 镁合金样品测定汇总 单位: %

单位	Nd
Nd-B-C 化学值	2. 25
中铝郑州院	2.171
导弹院	2.133
国家镁中心	2. 0034
国标北京	2. 181
昆明冶金院	2. 2058
上海交大	2.14
平均值	2.139
最大值	2.2058
最小值	2.0034
极差	0.2024

表 172 Nd-B-C 镁合金样品测定实验室内极差汇总

单位:	%
-----	---

单位	Nd
中铝郑州院	0.013
国家镁中心	0. 0356
导弹院	0.008
国标北京	0.003
昆明冶金院	0.039
上海交大	0.01
最大极差	0.039

3.6.7 锶-镁合金系列

锶-镁合金系列的仅有标准样品,未有实际样品,此次复验工作列出各单位对 E6322 标 样的测定统计,见表173。

表 173 E6324 镁合金样品测定汇总

单位	Sr
E6322 标准值	0.016
中铝郑州院	0.0162
导弹院	0.0161
国家镁中心	0.0153
国标北京	0.0159
昆明冶金院	0.0162
上海交大	0.0159
平均值	0.0159
最大值	0.0162
最小值	0.0153
极差	0.0009

3.6.8 钆-钇-锌-锆镁合金系列

钆-钇-锌-锆合金系列的未知样样品包含 GdY63-B(2 块,变形)、GdY93-Z(3 块,铸造)、GdY2466B(2 块,变形);各复验单位测定 GdY63-B 的结果见表 174-表 178,GdY63-B 的各验证单位测定数据汇总见表 179,各复验单位的实验室内极差数据汇总见表 180。

表 174 导弹院-GdY63-B 镁合金样品的多次测定

单位:	%
-----	---

样品	Gd	Y	Zn	Zr
GdY63-B-1	5. 352	3.034	/	1. 048
GdY63-B-2	5. 319	3.007	/	1. 084
GdY63-B-3	5. 433	3. 221	/	1. 122
GdY63-B-4	5. 403	3. 217	/	1. 128
GdY63-B-5	5. 435	3. 219	/	1. 108
GdY63-B-6	5. 429	3. 268	/	1. 108
平均值	5. 395	3. 161	/	1. 100
标准偏差	0.0488	0.111	/	0. 0295
相对标准偏差	0.904	3. 506	/	2. 684
最大值	5. 435	3. 268	/	1. 128
最小值	5. 319	3.007	/	1. 048
极差	0.116	0. 261	/	0.080

表 175 国家镁中心-GdY63-B 镁合金样品的多次测定

单位: %

样品	Gd	Y	Zn	Zr
GdY63-B-1	5. 4135	3. 1249		1.1165
GdY63-B-2	5. 3942	3. 1874	——	1. 1054
GdY63-B-3	5. 4268	3. 0895		1. 1249
GdY63-B-4	5. 3933	3. 1732		1. 1278
GdY63-B-5	5. 4048	3. 1548		1.1198
GdY63-B-6	5. 4119	3. 1969		1. 1068
平均值	5. 407	3. 154		1. 117
标准偏差	0.012	0.037		0.008
相对标准偏差	0.215	1. 181		0.754

最大值	5. 427	3. 197		1. 128
最小值	5. 393	3. 197		1. 128
极差	0.034 32.D 样人会经 F	0.107		0.022
表 176 国标北京-GdY6 样品	63-B 镁合金样品			
作中中 GdY63-B-1	Gd 5.527	Y 2 216	Zn	Zr 1.103
	5.525	3.216		
GdY63-B-2		3.217		1.102
GdY63-B-3	5.533	3.157		1.007
GdY63-B-4	5.531	3.151		1.006
GdY63-B-5	5.509	3.093		1.007
GdY63-B-6	5.541	3.107		1.171
平均值	5.528	3.157		1.070
标准偏差	0.011	0.048		0.070
相对标准偏差	0.19	1.514		6.53
最大值	5.541	3.217		1.171
最小值	5.509	3.093		1.006
极差	0.032	0.124		0.165
表 177 昆明冶金院-GdY	Y63-B 镁合金样	品的多次测定	单位	Ŭ: %
样品	Gd	Y	Zn	Zr
GdY63-B-1	5.4863	3.1666	\	1.109
GdY63-B-2	5.4979	3.1815	\	1.1101
GdY63-B-3	5.4933	3.1618	\	1.1107
GdY63-B-4	5.5027	3.1872	\	1.0813
GdY63-B-5	5.5128	3.1777	\	1.0834
GdY63-B-6	5.5126	3.1873	\	1.0844
平均值	5.5009	3.177	\	1.0965
标准偏差	0.0106	0.0107	\	0.0148
相对标准偏差	0.19	0.34	\	1.35
最大值	5.5128	3.1873	\	1.1107
最小值	5.4863	3.1618	\	1.0813
极差	0.0265	0.0255	\	0.0294
表 178 上海交大-GdY6	63-B 镁合金样品	品的多次测定	单位	: %
样品	Gd	Y	Zn	Zr
GdY63-B-1#-1	5. 41	3.05		0.913
GdY63-B-3#-1	5. 39	3. 22		1.03
GdY63-B-4#-1	5.39	3. 27		1.05
GdY63-B-1#-2	5. 38	3.04		0.956
GdY63-B-3#-2	5. 38	3. 19		1.04
GdY63-B-4#-2	5. 38	3. 25		1.05
平均值	5. 39	3. 17		1.00
标准偏差	0.01	0.10		0.06
相对标准偏差	0.19	3. 2		5.6
最大值	5. 41	3. 27		1.05

最小值	5.38	3.04		0.913
极差	0.03	0.24		0.13
表 179 GdY6	63-B 镁合金样品	品测定汇总	单位: %	
单位	Gd	Y	Zn	Zr
GdY63-B 化学值	5. 49	3. 16		1.04
中铝郑州院	5. 536	3. 186		1. 111
导弹院	5. 395	3. 161		1. 100
国家镁中心	5. 407	3. 154		1. 117
国标北京	5.528	3.157		1.070
昆明冶金院	5.5009	3.177		1.0965
上海交大	5. 39	3. 17		1.00
平均值	5.459	3.168		1.082
最大值	5.536	3.186		1.117
最小值	5.39	3.154		1
极差	0.146	0.032		0.117
表 180 GdY63-B 镁合金	样品测定实验室	区内极差汇总	单位	ें∵: %
单位	Gd	Y	Zn	Zr
中铝郑州院	0.049	0.049		0.011
导弹院	0.116	0. 261		0.080
国家镁中心	0.034	0. 107		0.022
国标北京	0.032	0.124		0.165
昆明冶金院	0.0265	0.0255		0.0294
上海交大	0.03	0.24		0.13
最大极差	0.116	0. 261		0. 165

注:表 180 中钇 Y 的最差值在导弹院和上海交大,此复验样品为两块,根据表 174、176 和表 178 中 可以看出此差值来自于两块样品之间的差值,不是同一样品的两次加工测定的,因此表 180 中的 Y 数据不 作为统计之用。

各复验单位测定 GdY93-Z 的结果见表 181-表 185, GdY94-Z 的各验证单位测定数据汇 总见表 186, 各复验单位的实验室内极差数据汇总见表 187。

表 181 导弹院-GdY93Z 镁合金样品的多次测定 单位: %

样品	Gd	Y	Zn	Zr
GdY93-Z-1	8. 861	2. 823	1.823	0. 440
GdY93-Z-2	8. 862	2.822	1.826	0. 439
GdY93-Z-3	8. 988	2.849	1.853	0.450
GdY93-Z-4	8. 988	2.844	1.854	0. 449
GdY93-Z-5	8. 862	2.841	1.838	0. 443
GdY93-Z-6	8. 860	2.844	1.839	0. 443
GdY93-Z-7	8. 940	2. 844	1.833	0. 443
GdY93-Z-8	8. 940	2.842	1.825	0. 449
GdY93-Z-9	8. 57	2.842	1.828	0. 449
平均值	8. 918	2. 839	1.835	0. 445
标准偏差	0.0561	0.00963	0. 0117	0.00427

相对标准偏差	0. 629	0.339	0.635	0.960
最大值	8. 988	2. 849	1.854	0. 450
最小值	8. 860	2.822	1.823	0. 439
极差	0. 128	0.027	0.031	0.011
表 182 国家镁中心-GdY	93-Z 镁合金样	品的多次测定	单位:	%
样品	Gd	Y	Zn	Zr
GdY93-Z-1	9. 0126	2.8158	1. 7921	0. 4471
GdY93-Z-2	8. 9921	2.8514	1. 7954	0.4122
GdY93-Z-3	8. 9211	2.8354	1.8354	0. 4191
GdY93-Z-4	9. 0294	2.8411	1. 7749	0. 4297
GdY93-Z-5	8. 9139	2.8698	1. 7552	0. 4389
GdY93-Z-6	8. 9931	2.8538	1.8021	0. 4421
GdY93-Z-7	8. 9234	2.8622	1.8025	0. 4339
GdY93-Z-8	8. 9179	2. 8571	1. 7901	0.4154
GdY93-Z-9	8. 9029	2. 9436	1. 7926	0. 4201
平均值	8.956	2.859	1. 793	0. 429
标准偏差	0.047	0.034	0.020	0.012
相对标准偏差	0.521	1. 173	1. 137	2. 766
最大值	9.029	2.944	1.835	0. 447
最小值	8.903	2.816	1. 755	0.412
极差	0.127	0.128	0.080	0.035
表 183 国标北京-GdY93	-Z 镁合金样品	的多次测定	单位:	%
样品	Gd	Y	Zn	Zr
GdY93-Z-1	9.051	2.827	1.834	0.410
GdY93-Z-2	9.042	2.823	1.835	0.410
GdY93-Z-3	9.020	2.811	1.826	0.429
GdY93-Z-4	9.020	2.813	1.826	0.430
GdY93-Z-5	9.036	2.813	1.825	0.431
GdY93-Z-6	9.040	2.825	1.825	0.418
GdY93-Z-7	9.042	2.825	1.826	0.432
GdY93-Z-8	9.020	2.817	1.834	0.428
GdY93-Z-9	9.037	2.822	1.833	0.429
平均值	9.034	2.820	1.829	0.424
标准偏差	0.011	0.006	0.004	0.009
相对标准偏差	0.13	0.22	0.24	2.11
最大值	9.051	2.827	1.835	0.432
最小值	9.020	2.811	1.825	0.410
极差	0.031	0.016	0.010	0.022
表 184 昆明冶金院-GdY9	3-Z 镁合金样品	品的多次测定	单位	: %
样品	Gd	Y	Zn	Zr
GdY93-Z-1	9.0278	2.8167	1.8365	0.4414
GdY93-Z-2	9.0281	2.8074	1.8355	0.4411

GdY93-Z-3	9.0344	2.8207	1.836	0.442		
GdY93-Z-4	9.0625	2.8271	1.8517	0.4592		
GdY93-Z-5	9.0668	2.8282	1.8513	0.4598		
GdY93-Z-6	9.0123	2.8083	1.8343	0.4399		
GdY93-Z-7	9.0096	2.8096	1.837	0.44		
GdY93-Z-8	9.0465	2.8145	1.8356	0.4552		
GdY93-Z-9	9.0499	2.8275	1.8395	0.4452		
平均值	9.038	2.818	1.840	0.447		
标准偏差	0.019	0.008	0.006	0.008		
相对标准偏差	0.213	0.284	0.350	1.786		
最大值	9.067	2.828	1.852	0.460		
最小值	9.010	2.807	1.834	0.440		
极差	0.057	0.021	0.017	0.020		
表 185 上海	表 185 上海交大-CdV93-7 链合全样品的多次测完 单位, %					

表 185 上海交大-GdY93-Z 镁合金样品的多次测定

单位: %

样品新编号	Gd	Y	Zn	Zr
GDY93-1#-1	9.03	2. 87	1.83	0.510
GDY93-2#-1	9. 07	2.89	1.84	0.534
GDY93-3#-1	9.06	2.89	1.83	0.516
GDY93-1#-2	9.08	2.89	1.84	0.514
GDY93-2#-2	9. 07	2.89	1.84	0.533
GDY93-3#-2	9.08	2.89	1.84	0.518
GDY93-1#-3	9.06	2. 88	1.84	0.512
GDY93-2#-3	9. 07	2.89	1.84	0.534
GDY93-3#-3	9. 07	2.89	1.84	0.517
平均值	9. 07	2.89	1.84	0.521
标准偏差	0.02	0.01	0.004	0.010
相对标准偏差	0. 17	0. 18	0. 21	1.9
最大值	9.08	2.89	1.84	0.534
最小值	9.03	2.87	1.83	0.510
极差	0.05	0.02	0.01	0.024

表 186 GdY93-Z 镁合金样品测定汇总 单位: %

单位	Gd	Y	Zn	Zr
GdY93-Z 化学值	8.85	2.85	1.83	0.46
中铝郑州院	9.032	2.805	1.871	0. 458
导弹院	8.918	2. 839	1.835	0.445
国家镁中心	8.956	2. 859	1. 793	0. 429
国标北京	9.034	2.82	1.829	0.424
昆明冶金院	9.038	2.818	1.84	0.447
上海交大	9.07	2. 89	1.84	0. 521
平均值	9.008	2.839	1.835	0.454
最大值	9.07	2.89	1.871	0.521
最小值	8.918	2.805	1.793	0.424
极差	0.152	0.085	0.078	0.097

单位	Gd	Y	Zn	Zr
中铝郑州院	0.124	0.084	0.042	0. 017
导弹院	0. 128	0. 027	0.031	0. 011
国家镁中心	0. 127	0. 128	0.080	0. 035
国标北京	0.031	0.016	0.010	0.022
昆明冶金院	0.057	0.021	0.017	0.020
上海交大	0.05	0.02	0.01	0.024
最大极差	0.128	0.128	0.08	0.035

各复验单位测定 GdY2466-B 的结果见表 188-表 192, GdY2466-B 的各验证单位测定数据汇总见表 193, 各复验单位的实验室内极差数据汇总见表 194。

表 188 导弹院-GdY2466-B 镁合金样品的多次测定

单位: %

样品	Gd	Y	Zn	Zr
GdY2466-B-1	6. 170	1.020	0.0560	0. 0271
GdY2466-B-2	6. 157	1.016	0.0562	0. 0272
GdY2466-B-3	6. 155	1.014	0.0560	0. 0270
GdY2466-B-4	6. 184	1.015	0.0570	0. 0273
GdY2466-B-5	6. 180	1.014	0.0560	0. 0268
GdY2466-B-6	6. 180	1.020	0.0568	0. 0270
平均值	6. 171	1.016	0.0563	0. 0271
标准偏差	0.0125	0. 00281	0.000450	0.000175
相对标准偏差	0. 203	0. 277	0. 799	0. 647
最大值	6. 184	1.020	0.0570	0. 0273
最小值	6. 155	1.014	0.0560	0. 0268
极差	0.029	0.006	0.0010	0. 0005

表 189 国家镁中心-GdY2466-B 镁合金样品的多次测定

单位: %

样品	Gd	Y	Zn	Zr
GdY2466-B-1	5. 9248	0. 9985	0.0584	0.0214
GdY2466-B-2	5. 9875	1.0247	0.0571	0.0225
GdY2466-B-3	5. 9011	1.0398	0.0562	0.0209
GdY2466-B-4	5. 8984	1.0447	0.0553	0.0219
GdY2466-B-5	5. 9147	1.0229	0.0548	0.0218
GdY2466-B-6	5. 9584	1.0397	0.0561	0.0211
平均值	5. 931	1.028	0.056	0.022
标准偏差	0.032	0.016	0.0012	0.0005
相对标准偏差	0. 542	1.518	2.095	2. 479
最大值	5. 988	1.045	0.058	0.023
最小值	5. 898	0. 999	0.055	0.021
极差	0.089	0.046	0.004	0.002

表 190 国标北京-GdY2466-B 镁合金样品的多次测定

单位: %

样品	Gd	Y	Zn	Zr
GdY2466-B-1	5.926	0.929	0.0559	0.0285

GdY2466-E	3-2	5.9	18	0.931		0.0561	0.0285
GdY2466-E	3-3	5.9	24	0.931		0.0563	0.0286
GdY2466-E	3-4	5.9	25	0.929		0.0562	0.0285
GdY2466-E	GdY2466-B-5		18	0.933		0.0563	0.0286
GdY2466-E	3-6	5.9	20	0.933		0.0561	0.0285
平均值		5.9	22	0.931		0.056	0.029
标准偏差		0.00)33	0.0018	;	0.0002	0.0001
相对标准偏	差	0.0	56	0.192		0.270	0.181
最大值		5.9	26	0.933		0.0563	0.0286
最小值		5.9	18	0.929		0.0559	0.0285
极差		0.0	08	0.004		0.0004	0.0001
表 191 昆明	月冶金院-GdY2	466-B 镁	合金样	品的多次流	则定	单	单位: %
样品		G	d	Y		Zn	Zr
GdY2466-E	3-1	5.90)82	0.9864	-	0.0587	0.026
GdY2466-E	3-2	5.90)52	0.9872	:	0.0589	0.026
GdY2466-E	3-3	5.92	242	0.9972	!	0.0583	0.026
GdY2466-E	3-4	6.02	226	1.0262	!	0.0602	0.0259
GdY2466-E	3-5	6.02	6.0232		!	0.0599	0.0258
GdY2466-E	3-6	5.9595		0.9947	'	0.0602	0.0259
平均值		5.9572		1.0023	,	0.0594	0.0259
标准偏差		0.0545		0.0175	;	0.0008	0.0001
相对标准偏	差	0.91		1.75		1.35	0.39
最大值		6.0232		1.0262	?	0.0602	0.026
最小值		5.90)52	0.9864		0.0583	0.0258
极差		0.1	18	0.0398	;	0.0019	0.0002
表 192 上	海交大-GdY24	66-B 镁↑	合金样品	品的多次测	定	单	位: %
样品新编号	Go	b		Y		Zn	Zr
GDY2466-A-1	6.0	24	1	. 004		0.058	0.028
GDY2466-B-1	5. 9	96	1	. 001		0.056	0.026
GDY2466-A-2	6.0	25	0	. 999		0.056	0.026
GDY2466-B-2	6.0	13	1	. 002		0.057	0.025
GDY2466-A-3	6.0	01	0). 999		0.056	0.027
GDY2466-B-3	6.0	17	0). 996		0.057	0.026
平均值	6.0	13	1	. 000		0.057	0.026
标准偏差	0.0	11	0	. 003		0.0007	0.0009
相对标准偏差	0.1	81	0	. 254		1.315	3.580
最大值	6.0	25	1	. 004		0.058	0.028
最小值	5. 9			. 996		0.056	0.025
极差	0.0	29	0	. 008		0.002	0.003
表	193 GdY2	 466-B 镁	合金样	品测定汇点	<u></u>	单位: %	Ó
单位		Go	d	Y		Zn	Zr
GdY2466-B 化	 .学值	5. 7	75	0.94		0.050	0.026

导弹院	6. 171	1.016	0.0563	0. 0271
国家镁中心	5. 931	1.028	0.056	0.022
国标北京	5.922	0.931	0.056	0.029
昆明冶金院	5.9572	1.0023	0.0594	0.0259
上海交大	6.013	1.000	0.057	0.026
平均值	5.974	0.995	0.057	0.026
最大值	6.171	1.028	0.0594	0.029
最小值	5.883	0.931	0.056	0.022
极差	0.288	0.097	0.0034	0.007
表 194 GdY2466-B 镁合金样品测定实验室内极差汇总			单	位: %

单位	Gd	Y	Zn	Zr
中铝郑州院	0.047	0.014	0.0008	0.0009
导弹院	0.029	0.006	0.0010	0.0005
国家镁中心	0.089	0.046	0.004	0.002
国标北京	0.008	0.004	0.0004	0.0001
昆明冶金院	0.118	0.0398	0.0019	0.0002
上海交大	0.029	0.008	0.002	0.003
最大极差	0.118	0.0462	0.0036	0.003

各复验单位测定 GdY2467-B 的结果见表 195-表 199, GdY2467-B 的各验证单位测定数 据汇总见表 200, 各复验单位的实验室内极差数据汇总见表 201。

表 195 导弹院-GdY2467-B 镁合金样品的多次测定 单位: %

样品	Gd	Y	Zn	Zr
0.W046F, P. 1	6.022	1. 397	1.060	0.0453
GdY2467-B-1	6.030	1. 396	1.065	0.0451
GdY2467-B-2	6.003	1.385	1.066	0.0456
Gu12407-D-2	6.006	1. 376	1.068	0.0457
平均值	6.015	1.389	1.065	0.0454
标准偏差	0. 0129	0.00995	0.00340	0.000275
相对标准偏差	0. 214	0.717	0.320	0.606
最大值	6.030	1. 397	1.068	0.0457
最小值	6.003	1. 376	1.060	0.0451
极差	0.027	0.021	0.0080	0.0006

表 196 国家镁中心-GdY2467-B 镁合金样品的多次测定 单位: %

样品	Gd	Y	Zn	Zr
GdY2467-B-1	6. 0174	1. 3054	0. 9924	0.0472
GdY2467-B-2	6. 0354	1.3198	1.0423	0.0473
GdY2467-B-3	5. 9942	1. 2987	0. 9944	0.0481
GdY2467-B-4	5. 9837	1. 3348	1.0124	0.049
平均值	6.008	1.315	1.010	0.048
标准偏差	0.020	0.014	0.020	0.001
相对标准偏差	0.335	1.057	1.980	1. 513

		Г		<u> </u>	T	T
最大值		6.03	35	1. 335	1.042	0.049
最小值		5.98	34	1. 299	299 0.992 0	
极差	极差		52	0.036	0.050	0.002
表 197 国标 1	比京−GdY240	67-B 镁台	金样品	品的多次测定	单位	Ž: %
样品		Gd	l	Y	Zn	Zr
GdY2467-B-1		6.17	70	1.412	1.038	0.047
GdY2467-B-2		6.17	75	1.411	1.040	0.047
GdY2467-B-3		6.17	73	1.411	1.039	0.048
平均值		6.17	73	1.411	1.039	0.047
标准偏差		0.00	25	0.0006	0.0010	0.0006
相对标准偏差		0.04	1	0.041	0.096	1.22
最大值		6.17	75	1.412	1.040	0.048
最小值		6.17	70	1.411	1.038	0.047
极差		0.00)5	0.001	0.002	0.001
表 198 昆明冶	金院-GdY2	467-B 镁	合金样	品的多次测定	单	位: %
样品		Gd		Y	Zn	Zr
GdY2467-B-1		5.99	06	1.3439	1.0443	0.0436
GdY2467-B-2		5.99	02	1.3503	1.0456	0.0431
GdY2467-B-3		6.00	07	1.3477	1.0446	0.0438
GdY2467-B-4		5.99	63	1.3497	1.0455	0.0431
GdY2467-B-5		5.998		1.348	1.0452	0.0438
GdY2467-B-6		6.00	03	1.3455	1.0449	0.0431
平均值		5.99	96	1.3475	1.045	0.0434
标准偏差		0.00	46	0.0024	0.0005	0.0004
相对标准偏差		0.0	8	0.18	0.05	0.92
最大值		6.00	07	1.3503	1.0456	0.0438
最小值		5.99	02	1.3439	1.0443	0.0431
极差		0.01	05	0.0064	0.0013	0.0007
表 199 上海 3	を大-GdY240	67-B 镁台	金样品	品的多次测定	单位	Ž: %
样品	Gd			Y	Zn	Zr
GDY2467-1	6. 02	25		1.376	0.992	0.0429
GDY2467-2	6.00	03		1.369	0. 987	0.0433
平均值	6.0	14		1. 372	0.990	0.0431
极差	0.02	22		0.007	0.005	0.0004
表 20	表 200 GdY2467		合金样	品测定汇总	单位: %	
单位				Y	Zn	Zr
GdY2467-B 化学	 值	6.036		1. 365	1.08	0.046
中铝郑州院		5. 963		1.354	1.020	0.0447
导弹院		6.0	15	1.389	1.065	0.0454
国家镁中心		6.00	08	1. 315	1.010	0.048
国标北京		6.17	73	1.411	1.039	0.047
昆明冶金院		5.99	96	1.3475	1.045	0.0434
上海交大		6.014		1. 372	0.990	0.0431

平均值	6.028	1.366	1.011	0.045
最大值	6.173	1.411	1.065	0.048
最小值	5.963	1.315	0.990	0.042
极差	0.21	0.096	0.075	0.006

表 201	GdY2467-B 镁合金样品测定实验室内极差汇总	
12 201		

34	1).	0 /
里	付.	%

单位	Gd	Y	Zn	Zr
中铝郑州院	0.033	0.004	0.004	0.0002
导弹院	0.027	0.021	0.0080	0.0006
国家镁中心	0.052	0.036	0.050	0.002
国标北京	0.005	0.001	0.002	0.001
昆明冶金院	0.0105	0.0064	0.0013	0.0007
上海交大	0.022	0.001	0.004	0.000
最大极差	0.052	0.036	0.05	0.002

3.7 精密度数据

主编单位将实验室内多次测定的最大极差和实验室平均值之间测定的极差汇总,汇总结果见表 195-表 206 中的实验室内极差和实验室间极差; 2023 年 6 月预审会议要求增加经过GB/T 6379.2 分析的重复性限和再现性限数据,主编单位将各单位数据依据类别汇总后根据国家标准计算得到相关重复性限和再现性限数据,计算结果见表 195-表 206 中的计算重复性限和计算再现性限;由于钛元素的实际测定含量一直在 0.0010%以下,处于测定范围以外,未统计极差。

表 195 铝元素的极差数据汇总

单位:%

加入見井田 ///	亚拉住	实验室	内重复性限	实验室间再现性	
铝含量范围/%	平均值	实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.0050-0.010	0.0084 (058#)	0.0039	0.0019	0.0040	0.0055
>0.010-0.050	0.020 (pure)	0.0041	0.0020	0.0041	0.0056
>1.0-5.0	2. 673 (AZ31)	0.33	0.097	0.20	0.28
	3.518 (AS31)	0.098	0.065	0.17	0.19
	2.955 (ZA73)	0.20	0.051	0.12	0.15
	2.504 (ZA53)	0.14	0.075	0. 17	0.21
>5.0-10.0	9.108 (AZ91Z)	0.21	0.16	0. 37	0.44
	9. 201 (AZ91B)	0. 25	0.18	0.50	0.51
	6.275 (AM60)	0.087	0.14	0.34	0.38
	5. 674 (AZ63)	0. 22	0.15	0.36	0.42

表 196 锌元素的极差数据汇总

24	1	0./
	477 •	0/2

锌含量范围/% 平均值			内重复性限	实验室间再现性	
	下均阻 	实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.0020-0.010	0.0061 (pure)	0.0016	0.0004	0.0009	0.0012
	0.0063 (058#)	0.0015	0.0002	0.0003	0.0007
>0.010-0.050	0.045 (AM60)	0.0051	0.0021	0.0063	0.0060

>0.050-0.10	0.057 (2466)	0.0036	0.0024	0.0034	0.0068
>0.10-0.50	0.129 (AS31)	0.012	0.0041	0.010	0.012
>0.5-1.0	0.682 (AZ91Z)	0.042	0.018	0.011	0.030
	0.668 (AZ91B)	0.029	0.0097	0.018	0.027
	0.879 (AZ31)	0.054	0.030	0.043	0.083
>1.0-5.0	2.968 (AZ63)	0. 22	0.11	0.18	0.30
	1.555 (ZM21)	0.027	0.033	0.12	0.094
	4.826 (ZnZr1#)	0. 20	0.065	0.095	0. 19
	4.373 (ZnCe7#)	0.074	0.091	0. 25	0. 26
	1.835 (GdY93)	0.080	0.027	0.078	0.076
	3.871 (ZnY-3#)	0.053	0.12	0. 25	0. 32
>5.0-10.0	5. 401 (ZA53)	0.19	0.14	0.23	0.39
	7.347 (ZA73)	0.19	0.15	0.45	0. 42

表 197 锰元素的极差数据汇总 单位: %

锰含量范围/%	亚拉体	实验室内重复性限		实验室间再现性	
	平均值	实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.0020-0.010	0.0098 (058#)	0.0037	0.0012	0.0014	0.0034
>0.010-0.050	0.0139 (pure)	0.0018	0.0004	0.0008	0.0012
	0.016 (ZnZr1#)	0.0012	0.0009	0.0020	0.0025
	0.017 (ZnCe7#)	0.0007	0.0006	0.0016	0.0018
>0.10-0.50	0.187 (AZ91Z)	0.017	0.0063	0.017	0.018
	0.324 (AZ91B)	0.024	0.0091	0.0060	0.026
	0.275 (AM60)	0.023	0.014	0.035	0.039
	0. 239 (AZ63)	0.030	0.0087	0.020	0.025
	0. 290 (AZ31)	0.030	0.021	0.050	0.058
	0.429 (ZnY-3#)	0.013	0.018	0.049	0.050
	0.317 (AS31)	0.11*	0.037	0.065	0.10
>0.50-1.0	0.908 (ZM21)	0.024	0. 025	0.059	0.070
>1.0-5.0	1.705 (ME20)	0.033	0.055	0. 17	0.16

表 198 硅元素的极差数据汇总 单位:%

71. 个是英国 /o/	平均值	实验室内重复性限		实验室间再现性	
硅含量范围/%	下均恒 	实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.0050-0.010	0.0065 (058#)	0.0017	0.0007	0.0015	0.0020
>0.010-0.050	0.013 (pure)	0.0052	0.0018	0.0028	0.0051
	0.036 (AZ91Z)	0.0050	0.0023	0.0050	0.0065
	0.013 (AZ91B)	0.0033	0.0036	0.010	0.010
	0.025 (AM60)	0.0051	0.0029	0.0072	0.0081
	0.033 (AZ63)	0.017	0.0062	0.0080	0.018
	0.017 (AZ31)	0.0036	0.0039	0.011	0.011
	0.016 (ZM21)	0.0047	0.0016	0.0040	0.0046
>0.5-1.0	0.721 (AS31)	0.072	0.039	0.097	0.11

表 199 铁元素的极差数据汇总

单位: %

铁含量范围/%	平均值	实验室内	为重复性限	实验室间再现性	
扶召里氾围/%	十均恒	实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.0020-0.010	0.0036 (pure)	0.0010	0.0004	0.0009	0.0010
	0.0032 (058#)	0.0017	0.0005	0.0010	0.0014
	0.0010 (AZ91Z)	0.0007	0.0005	0.0012	0.0015
	0.0050 (AZ91B)	0.0011	0.0007	0.0015	0.0020
	0.0029 (AZ31)	0.0018	0.0007	0.0016	0.0021
	0.0067 (ZM21)	0.0011	0.0014	0.0037	0.0040
	0.0022 (AS31)	0.0016	0.0006	0.0013	0.0018
	表 200	铜、镍元素的极差	数据汇总	单位: %	
	75 16 ft	实验室内	内重复性限	实验室[间再现性
铜含量范围/%	平均值	实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.0020-0.010	0.0006 (pure)	0.0007	0.0003	0.0007	0.0007
	0.0003 (058#)	0.0004	0.0002	0.0002	0.0004
	0.0080 (AZ91Z)	0.0015	0.0005	0.0010	0.0013
	0.0028 (AM60)	0.0009	0.0004	0.0006	0.0012
>1.0-5.0	2.859 (ZnY-3#)	0.068	0.089	0.20	0.25
	平均值	实验室内	内重复性限	实验室门	 间再现性
镍含量范围/%		实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.0020-0.010	0.0022 (ZA73)	0.0004	0.0004	0.0002	0.0005
	0.0079(GdY63-B)	0.0005	0.0007	0.0005	0.0010
	表 201	 锆、铅元素的极差	数据汇总	单位: %	<u> </u>
M A B # 157 (c.		实验室内		实验室间再现性	
锆含量范围/%	平均值	实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.10-0.50	0.371 (ZnZr1#)	0.014	0.011	0.027	0.031
	0.454 (GdY93)	0.035	0.036	0.097	0.11
>1.0-5.0	1.082 (GdY63)	0.17	0.059	0. 12	0.17
铅含量范围/%	平均值	实验室内	 	实验室	间再现性
		实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.0020-0.010	0.0020 (E4135)			0.0007	0.0008
	0.0052 (E4131)			0.0006	0.0006
	表 202			位: %	>→
铈含量范围/%	平均值		内重复性限 		间再现性
>0.10-0.50	0.333 (ME20)	实验室内极差 0.021	计算重复性限 0.025	实验室间极差 0.066	计算重再现性 0.070
>1. 0-5. 0	3. 277 (ZnCe7#)	0.021	0.025	0.066	0.070
× 1. U J. U	表 200				0.014
	AX 20.	注 203			
钇含量范围/%	平均值	实验室内极差	计算重复性限	实验室间极差	计算重再现性
		ンが正しいな正	71 开土久山队	→ 3型土円/1X/生	1 升至行机压

0.037

0.086

0.11

0.0090

>0.50-1.0

0.853 (ZnY-3#)

	0.995 (2466)	0.047	0.036	0.097	0.10
>1.0-5.0	3.168 (GdY63)	0.27	0.073	0.032	0.21
	2.839 (GdY93)	0.13	0.037	0. 085	0.11

以入具花园 /0/ 亚切皮	实验室内重复性限		实验室间再现性		
₩ 5 里 把 団 / %	 せきを表現 − ※ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	实验室内极差	计算重复性限	实验室间极差	计算重再现性
>1.0-5.0	2. 139 (Nd-B)	0.039	0.073	0.21	0.21
	2.60 (E6334)			0.12	0.11

表 205 锶元素的极差数据汇总 单位:%

细令导蓝国/0/	范围/% 平均值	实验室内重复性限		实验室间再现性	
锶含量范围/%		实验室内极差	计算重复性限	实验室间极差	计算重再现性
>0.010-0.050	0. 0159 (E6322)		——	0.0009	0.0009

表 206 钆元素的极差数据汇总 单位:%

轧含量范围/%	平均值 -	实验室内重复性限		实验室间再现性	
		实验室内极差	计算重复性限	实验室间极差	计算重再现性
>5.0-10.0	5.459 (GdY63)	0.12	0.073	0.15	0.21
	9.01 (GdY93)	0.13	0.091	0.16	0.26
	5. 974 (2466)	0.12	0.11	0.29	0.30

由于本试验方案中同一个牌号的实际测定样品包含几块不同样品,该样品采用相邻的样品切割或变形而来,由于不同样块之间的不均匀偏析等因素造成实验室内部多次测定的极差反而大于实验室之间的极差,考虑到实际测定中采用同一样品的两次车或铣操作,实际测定中相邻两次车或铣后测定的实验室内部极差应远小于本试验方案中的实验室内部极差;表195-表206中的实验室内重复性数据,除了不均匀偏析的样块之外,极差数据和计算数据具有相对的一致性;表195-表206中的实验室间再现性数据方面,极差数据和计算数据的一致性更强,两者一致性程度更大;

考虑到 XRF 测定镁及镁合金属于块状样品的测定,样品测定中包含样品偏析等不均匀因素,本编制组根据表 195-表 206 中数据,采用极差数据和计算数据两者中最大数据原则,拟定出本方法的实验室重复性限和实验室间允许差,将精密度数据提交各参编单位和相关单位进行意见征求,最终形成标准的精密度数据,数据见表 207 和表 208。

表 207 实验室重复性限(r)

元素含量	r
%	%
>0.0020~0.010	0.0020 (除硅和铝元素之外的元素)
	0.0035 (硅和铝元素)
> 0.010, 0.050	0.0050 (除硅和铝元素之外的元素)
>0.010~0.050	0.0070 (硅和铝元素)
>0.050~0.10	0.0080

>0.10~0.50	0.05
>0.50~1.00	0.08
>1.00~5.00	0.20
>5.00~10.00	0.30
>10.00	0.40

表 208 实验室之间允许差

元素含量	允许差				
%	%				
>0.0020~0.010	0.0035 (除硅和铝元素之外的元素)				
≥0.0020~0.010	0.0050 (硅和铝元素)				
>0.010.0.050	0.0070 (除硅和铝元素之外的元素)				
>0.010~0.050	0.010 (硅和铝元素)				
>0.050~0.10	0.015				
>0.10~0.50	0.07				
>0.50~1.00	0.10				
>1.00~5.00	0.30				
>5.00~10.00	0.50				
>10.00	0.70				

征求意见中有单位提出可采用不同含量的元素分类精确方式编制精密度数据,主编单位根据表 195-206 数据编制精密度数据,同时广泛征求意见最终得到表 209-表 212 的分类精密度数据;其中表 209 为铝硅元素的精密度数据,由于铝硅元素的超低荧光差额,采用允许差方式进行编制;其中表 210 为锌、锰、铁、镍、铜、锆、铈、钇、钕、钆等元素的精密度数据,其采用重复性限和再现性限方式编制;其中表 211 为铅、钛、锶元素的精密度数据,由于所有样品中钛元素含量低于最低 0.0020%的下限,而铅、锶元素只有单一样品,因此铅、钛、锶也采用允许差方式进行编制,钛元素参考铁元素"0.0029"含量范围给定一个允许差。

表 209 铝硅元素的精密度数据

二丰	质量分数	实验室内允许差	实验室间允许差
九糸	0. 020 2. 50 3. 52 5. 68 6. 28 9. 21	%	%
	0. 0084	0.0019	0.0039
	0.020	0.0025	0.0055
	2.50	0. 17	0.21
A1	3.52	0. 19	0.25
	5. 68	0. 22	0.35
	6. 28	0. 25	0.38
	9.21	0.30	0.50
Si	0.0065	0.0017	0.0025
51	0.013	0.0020	0.0036

0.016	0.0025	0.0040
0. 025	0.0030	0.0050
0.036	0.0035	0.0060
0.73	0. 072	0. 097

表 210 锌、锰、铁、镍、铜、锆、铈、钇、钕、钆元素的精密度数据

元素	质量分数 %	重复性限 r	再现性限 R	
	0.0061	0. 0005	0.0012	
	0.045	0. 0021	0.0060	
	0.057	0.0036	0.0068	
	0.13	0.010	0.012	
Zn	0.67	0. 029	0. 040	
	1.56	0.08	0. 12	
	2.96	0.15	0. 18	
	4.83	0.18	0. 20	
	5. 40	0.20	0. 28	
	7. 35	0.25	0.40	
	0.0098	0.0010	0.0014	
Mn	0.017	0.0018	0.0020	
	0.19	0. 017	0.020	
	0.32	0. 025	0.03	
	0.43	0.04	0.05	
	0.91	0.07	0.09	
	1.71	0.09	0. 16	
	0.0029	0.0007	0.0010	
Fe	0.0050	0.0009	0.0015	
	0.0067	0.0011	0.0018	
	0. 0022	0. 0004	0.0005	
Ni	0. 0079	0. 0007	0.0010	
	0.0028	0.0005	0.0008	
Cu	0.0080	0.0010	0.0013	
	2.86	0.15	0. 20	
	0.37	0.02	0.04	
Zr	0.46	0.04	0.09	
-	1.09	0.08	0. 15	
	0.34	0.03	0. 07	
Се	3. 28	0.15	0. 20	
	0.85	0.04	0. 10	
Y	1.00	0.06	0. 11	
	2.84	0.13	0. 18	

	3. 17	0.16	0.20
MJ	2. 14	0.08	0.20
Nd	2.60	0.11	0. 22
	5.46	0.11	0.25
Gd	5.98	0.12	0.30
	9.01	0.25	0.35

表 211 铅、钛、锶元素的精密度数据

元素	质量分数	实验室内允许差	实验室间允许差
儿系	%	%	%
Ti	0.0029	0.0007	0.0010
Pb	0.0052	0.0006	0.0008
Sr	0.016	0.0009	0.0014

3.8 工作曲线校正方法

2023年6月预审会议要求增加各类工作曲线的校准方法,主编单位和一验单位进行实验对比,并汇总至编制说明中。主编单位首先考察自身实验室各工作曲线的校正条件,对比某一元素工作曲线在校正前后样品 XRF 测定值、准确度系数(也称为残差、剩余方差、RMS)、线性系数的变化程度,最终确定各程序的校正方案;后续将相关校正方案反馈给一验单位和部分二验单位,他们根据自身实验室的设备进行验证并反馈,校准验证的汇总数据见附录 A;综合各单位信息,最终确认校准方案,校正方案见表 212。

表 212 镁及镁合金校正方案

	农 212							
类别	元素与	i牌号	推荐校正方式	可选校正方式	备注			
2000	主要元素 典型牌号		11 Demonstra	VICEE 3474	н ш			
纯镁系列	Si、Fe、Cu、Al、 Mn、Zn、Ni、Pb	纯镁 995、纯镁 998	不推荐校正					
常规镁合金	Al. Zn. Mn. Si. Fe. Cu. Ni	AZ91、AZ63、AM60、 AZ31、AZ63、ZM21、 AS31	可不选择校正	A1 可采用可变阿尔 法系数进行校正	此类中锌通常不高 于 3%			
镁锌锆系列	Zn, Zr, Mn	ZK60、ZK51、ZK61	不推荐校正					
镁锌铈系列	Zn. Ce. Mn	ZE20M、ZM21N、 ME20	推荐 Zn 采用 Ce 进行校正	Ce 可以不进行校正				
镁锌铝铜系列	Zn、Mn、Al、Cu	ZC63A、ZA73	推荐 Zn 采用 Cu 进行校正	Cu 可选 Zn 进行校正				
镁钆钇锌锆钕 系列	Gd、Y、Zn、Zr、Nd	VW64M、VW75M、 VW76S、VW10Z、 VW83M、VW84M	推荐 Y 采用 Gd 进行校正, 并且 Gd 采用 Y 进行校正					

必须注意:校准方案中"推荐校正方式"的校正是经过不少于6家实验室验证一致的校正方式,使用推荐校正方式后相关准确度系数、线性系数和XRF测定结果发生显著正向变化,但同时注意"推荐校正方式"不是强制性校正;"可选校正方式"是使用后相关准确度系数、

线性系数和 XRF 测定结果没有发生显著变化,属于可有可无类别的,至少加上相关校正后不会引起有害性的负相关变化,同时注意可以不选择"可选校正方式"中的校正方式;校正时必须考察浓度散布宽的基体元素(含量梯度变化较宽的元素,通常是主要元素)的影响,应根据样品相关准确度系数(也称为残差、剩余方差、RMS)、线性系数和 XRF 测定结果等判别,其中 XRF 测定值和标准或化学值的接近程度最为重要,其次为准确系数和线性系数,准确度系数越小越好,线性系数越接近 1 越好(有设备采用 K 值,约小越好);校正选项应遵循简化原则,即最大程度减少校正选项的个数,避免特殊样品可能引起的测定偏差。

3.9 第三方实验室验证

2023年6月预审会要求增加除了参编单位之外的第三方单位进行方法验证(暂定为包头铝业有限公司)。2023年8月底,在参编单位实验室完善复验数据结束后,将全套镁及镁合金样品邮寄至包头铝业有限公司进行第三方复验,包头铝业进行积极验证,测定结果见表 213-表 231。

3.9.1 纯镁系列测定

表 213 包头铝业-Pure-1#纯镁样品的多次测定

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
Pure-1#-1	0.0130	0.0036	0.00083	0.0220	0.0140	0.0060	0.0002	0.0007	0.0004
Pure-1#-2	0.0135	0.0038	0.00066	0. 0187	0.0141	0.0059	0.0002	0.0007	0.0004
Pure-1#-3	0.0129	0.0035	0.00080	0.0194	0.0142	0.0055	0.0003	0.0006	0.0003
包铝-平均值	0.0131	0.0036	0.0008	0.0200	0.0141	0.0058	0.0002	0.0007	0.0004
6 家-平均值	0.0132	0.0036	0.0006	0.0202	0.0139	0.0061	0.0001	0.0006	0.0003

表 214 包头铝业-058#纯镁样品的多次测定

单位: %

样品	Si	Fe	Cu	Al	Mn	Zn	Ni	Pb	Ti
058#-1	0.0064	0.0040	0.0004	0.0077	0.0105	0.0067	0.0001	0.0007	0.0005
058#-2	0.0061	0.0032	0.0003	0.0075	0.0101	0.0063	0.0001	0.0009	0.0004
包铝-平均值	0.0062	0.0036	0.00035	0.0076	0.0103	0.0065	0.0001	0.0008	0.00045
6 家-平均值	0.0065	0.0036	0.0003	0.0084	0.0098	0.0063	0.0001	0.0006	0.0003

3.9.2 常规镁合金系列测定

表 215 包头铝业-AZ91-Z 镁合金样品的多次测定

单位: %

样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-Z-1	8. 980	0.679	0. 1886	0.0361	0.0015	0.0083	0.0006
AZ91-Z-2	8. 961	0. 683	0. 1885	0.0362	0.0016	0.0078	0.0005
包铝-平均值	8.970	0.681	0. 1886	0.036	0.0016	0.0080	0.0006
6 家-平均值	9.108	0.682	0.187	0.036	0.001 0	0.008 0	0.0005
样品	Al	Zn	Mn	Si	Fe	Cu	Ni
AZ91-B-1	9. 101	0.649	0.320	0.0161	0.0044	0.0001	0.0002
AZ91-B-2	8. 983	0.646	0. 314	0.0152	0.0043	0.0001	0.0002
AZ91-B-3	9.009	0.637	0. 334	0.0169	0.0051	0.0001	0.0003

包铝-平均值		9.031	0	. 644	0 :	323	0.01	61	0.0046	; T	0.0001	0.0002
6 发 — 平均值		9.201		0.668		324	0.01		0.005	+	/	0.0002
6 家-平均值 表 216		9.201 铝业-AZ						. 3	0.003		·/ 位: %	0.0002
		Al	1	Zn	Mn Si			Fe	T	Cu	Ni	
AM60-Z-1	+,	6. 171	0	. 0445	0. 2		0. 02		0.0009	,	0.0026	0,0006
AM60-Z-2		6. 186		0451	0. 2		0. 02		0.0010	+	0.0028	0.0005
包铝-平均值		6. 178		0.045	0. 2		0. 02		0.001	+	0.0027	0.0006
6家-平均值		6.275		0.045	0.2		0.02		0.0011		0.0028	0.0004
		B业-AZ									ī: %	0.0004
		Al		Zn	1	n	Si		Fe		Cu	Ni
AZ63-Z-1		5. 681	2	. 958	0. 2		0.02		0.0008	₹	0.0007	0,0008
AZ63-Z-2		5. 528		. 959	0. 2		0.02		0.0007	-	0.0008	0,0008
		5. 605		. 959	0. 2		0.02		0.0008	-	0.0008	0,0008
6 家-平均值		5.675		2.956 0.2			0.03		0.0009	+	0.0007	0.0007
							 单位	<u>∵</u> : %				
————— 样品	1	A1		Zn	Mı		Si		Fe		Cu	Ni
AZ31-B-1	2.	. 692	0.	911	0. 2	98	0.018	32	0.0035		0.0001	0.0005
AZ31-B-2	2.	. 691	0.	910	0. 2	97	0.019	93	0.0037		0.0002	0.0005
AZ31-B-3	2.	. 689	0.	909	0. 2	96	0.017	76	0.0034		0.0002	0.0004
包铝-平均值	2.	. 691	0.	910	0.2	97	0.018	34	0.0035	,	0.0002	0.0005
6家-平均值	2	.673	0.	.879	0.2	90	0.017	73	0.0029		\	0.0004
表 219 包	可头银	吕业-ZM2	21-Z	镁合金	样品的	勺多次	八测定			单位	ें∷ %	
样品		Zn		Mı	ı	(Si		Fe		Cu	Ni
ZM21-Z-1		1. 55	8	0.8	99	0.0	0156	0.	. 0072	0	0.0003	0.0003
ZM21-Z-2		1. 55	2	0.8	90	0.0	0166	0.	. 0075	0	0.0003	0.0002
包铝-平均值		1.55	5	0.8	95	0.0	0161	0.	. 0074	0	0.0003	0.0003
6 家-平均值		1.555	5	0.9	08	0.	016	0	.0067	(0.0003	0.0002
表 220	包头铂	铝业-AS	31-Z	镁合金	样品的	的多次	大测定			单位	<u>\</u>	
样品		Al		Zn	Mı	1	Si		Fe		Cu	Ni
AS31Z-1	3.	. 602	0.	131	0.3	51	0.75	6	0.003	1	/	0.0004
AS31Z-2	3.	. 629	0.	129	0.3	03	0. 74	9	0.003	0	/	0.0005
AS31Z-3	3.	. 553	0.	130	0.3	27	0. 74	7	0.002	9	/	0.0005
AS31Z-4	3.	. 606	0.	126	0.3	38	0. 73	9	0.003	0	/	0.0006
包铝-平均值	3.	. 598	0.	129	0.3	30	0.74	8	0.003	0	/	0.0005
6家-平均值	3	.518	0.	.129	0.3	17	0.72	1	0.002	2	\	0.0006

3.9.3 锌-锆镁合金系列测定

表 221 包头铝业- ZnZr1#-Z 镁合金样品的多次测定

单位: %

样品	Zn	Zr	Mn	Cu	Ni
ZnZr1#-Z-1	4.885	0.375	0.0169	0.0003	0.0001
ZnZr1#-Z-2	4.759	0.368	0.0167	0.0003	0.0001
包铝-平均值	4.822	0.372	0.0168	0.0003	0.0001
6 家-平均值	4.826	0.371	0.016	\	\

3.9.4 锌-铈镁合金系列测定

表 222 包头铝业-ZnCe-7#镁合金样品的多次测定

单位: %

样品	Zn	Се	Mn
ZnCe-7#-1	4. 457	3.308	0.0165
ZnCe-7#-2	4.461	3.313	0,0174
包铝-平均值	4.4590	3.3105	0.0165
6 家-平均值	4.373	3.277	0.017

表 223 包头铝业-ME20#镁合金样品的多次测定

单位: %

样品	Zn	Се	Mn
ME20-1		0.348	1.706
ME20-2		0.350	1. 703
ME20-3		0.347	1. 708
ME20-4		0.348	1.704
包铝-平均值		0.348	1.705
6 家-平均值		0.333	1.705

3.9.5 锌-钇-铜-铝镁合金系列

表 224 包头铝业-ZnY-3-B 镁合金样品的多次测定

单位: %

样品	Zn	Y	Cu	Mn
ZnY-3-B-1	3.959	0.876	2. 934	0.418
ZnY-3-B-2	3. 972	0,864	2. 940	0. 426
包铝-平均值	3.966	0.876	2. 937	0. 422
6 家-平均值	3.871	0.853	2.859	0. 429

表 225 包头铝业-ZA-73M-Z 镁合金样品的多次测定

单位:%

样品	Zn	Y	Cu	A1	Mn
ZA-73M-Z-1	7. 308			2.869	
ZA-73M-Z-2	7. 320			2.895	
ZA-73M-Z-3	7. 311			2.906	
包铝-平均值	7. 313			2.890	
6家-平均值	7. 347			2.955	

注: "——"是由于该样品中没有此主量元素,或含量大幅低于工作曲线范围的含量,因此未测定。

表 226 包头铝业-ZA-53D-Z 镁合金样品的多次测定

单位: %

样品	Zn	Y	Cu	A1	Mn
ZA-53D-Z-1	5. 401			2. 488	
ZA-53D-Z-2	5. 313	——		2.442	——
ZA-53D-Z-3	5. 296	——		2.353	——
包铝-平均值	5. 337	——		2. 428	
6 家-平均值	5. 342			2.566	

3.9.6 锌-钕镁合金系列

表 227 包头铝业-Nd 镁合金样品的多次测定

单位:%

样品	Nd
Nd-B-C-1	2.120

Nd-B-C-2	2. 101
包铝-平均值	2. 1105
6 家-平均值	2. 139

3.9.7 锌-锶镁合金系列

表 228 包头铝业-镁锶镁合金的 XRF 测定

单位: %	
-------	--

样品	Sr
E6324 标准值	0. 016
帕纳科 XRF 测定值	0.0161

3.9.8 钆-钇-锌-锆镁合金系列

表 229 包头铝业-GdY63-B 镁合金样品的多次测定

单位:%

样品	Gd	Y	Zn	Zr
GdY63-B-1	5. 531	3. 186		1.108
GdY63-B-2	5. 546	3. 188		1.112
包铝-平均值	5. 539	3. 187		1.110
6 家-平均值	5.459	3.168		1.082

表 230 包头铝业-GdY93-Z 镁合金样品的多次测定 单位: %

样品	Gd	Y	Zn	Zr
GdY93-Z-1	9.064	2. 798	1.854	0. 475
GdY93-Z-2	9.036	2. 800	1.857	0.486
GdY93-Z-3	9.028	2. 796	1.846	0. 478
包铝-平均值	9.043	2. 798	1.852	0. 480
6 家-平均值	9.008	2.839	1.835	0.454

表 231 包头铝业-GY2466-B 镁合金样品的多次测定 单位: %

样品	Gd	Y	Zn	Zr
GdY2466-B-1	5. 989	0.986	0.0566	0.0278
GdY2466-B-2	5. 971	0. 998	0.0567	0.0277
包铝-平均值	5. 980	0. 992	0.057	0.028
6 家-平均值	5.974	0.995	0.057	0.026

综上,对比包头铝业测定结果和前述 6 家单位的测定结果,各系列中各元素的测定结果 均相吻合,再次证明 XRF 测定镁及镁合金方法的良好重现性和广泛适用性。

3.10 关于高成分合金中中微量元素的测定方法

GdY63-B中钆、钇很高含量,但锌含量很低,ZA73/ZA53中锌和铝等元素含量很高但锰、铜等元素等超出曲线下限的元素如何测定?针对此问题,中铝郑州研究院提出利用纯镁工作曲线测定。具体数据见附录 B。

四 标准中如涉及专利,应由明确的知识产权说明

无

五 预期达到的社会效益等情况

(一) 项目的必要性简述

化学成分是决定镁及镁合金牌号、性能以及应用方向的重要因素,在航空航天、军工制品、镁合金产品制造、钢铁冶炼等领域元素成分测定尤为重要,因此镁及镁合金的元素测定是基础性的测定工作。目前镁及镁合金化学元素分析方法主要采用 GB/T 13748 系列标准中相关方法,主要包含湿法化学、电感耦合等离子体原子发射光谱法和光电直读发射光谱法等分析测试方法;其中,湿法化学程序繁琐、测试周期相对较长,而单一的光电光谱分析方法尽管可以快速准确测定,但对于多类金属快速测定,单台设备存在金属的交叉污染风险,多台购置又增加测定成本,因此光电光谱不能全面满足稀土新材料、军工科研等多方面快速分析的需要,例如军工单位使用合金类型多样,如仅用光电光谱法测定镁及镁合金,就存在各类金属交叉污染风险;同时高含量的镁合金的 XRF 测定方法具有一定测定优势。因此需要制定新的镁及镁合金快速分析方法标准,而 X 射线荧光光谱法(XRF)测定镁及镁合金是一种高效、快速、准确的多元素同时测定分析方法。

(二) 项目的可行性简述

X 射线荧光光谱法作为一种成熟的分析方法,测定镁基体物质干扰小、背景低、灵敏度高,并且有完善的、明确的数学校正模型做理论指导,该方法分析元素范围广泛,测定覆盖范围宽。XRF 分析借助镁及镁合金光谱标准样品,制作工作曲线,能得到大量准确可靠的数据。前期已经同国家镁及镁合金质量监督检验中心、中国空空导弹研究院做 XRF 测定镁合金的对标测定工作,证明了方法的可行性。

(三)标准的先进性、创新性、标准实施后预期产生的经济效益和社会效益

本次制定工作开拓了镁及镁合金检测的新方法,促进镁及镁合金检测标准的完善,有助于①提高镁及镁合金快速分析的效率,为镁及镁合金相关产业提供广泛可接受的新型快速测定方法;②规范现有使用 XRF 测定镁及镁合金相关人员的制样操作,提高镁及镁合金 XRF 分析检测的精度水平,彰显国家标准的指导性作用;③显著提高镁及镁合金中铝、钆、钇等高含量元素测定水平,推动镁-稀土等轻质稀土新材料的发展,发挥标准对新材料产业发展的技术促进作用;④有助于企业充分利用高普及率的 XRF 设备,显著降低企业分析检测成本;⑤扩大镁及镁合金成分检测的方法选项,增加生产企业、科研单位自主灵活性,通过方法体系之间的对标比对,促进镁及镁合金检测水平的不断进步与提高;⑥进一步为汽车、航空航天等轻量化合金测定提供新的基础性保障,促进未来镁及镁合金绿色产业的发展。

六 采用国际标准和国外先进标准的情况

本标准未采用国际标准和国外标准。

本标准与 ISO 17054:2010(E)、EN15063-2:2006标准、GB_T36164-2018、GB/T 223.79-2007、GB/T 36226-2018、YS/T 483-2022、YS/T 806-2020对比,具体见表 232 所

表 232 本标准与 SO 17054:2010(E) 标准对比

标准号	测定对象	测定元素	测定范围/%	测定方法	校准方法介绍
ISO 17054:2010(E)	高合金钢	硅、锰、磷、铬、镍、	见下图1	X-射线荧光光	无分类校正相关介绍
(EN 10315:2006)		钼、铜、钴、钒、钛、		谱法	
(GB_T36164-2018 MOD)		钕 (11 个)			
GB/T 13748. 23-202X	镁及镁合金	15 种元素	详见文本	X-射线荧光光	分类测定,不同类别有建
				谱法	议校正方式
EN 15063-1:2014	铜及铜合金 XRF 方法	未规定元素	无	波长色散 X-射	仅仅介绍校准方法, 无具
	第1部分:常规方法指南			线荧光光谱法	体校正建议
EN 15063-2:2006	铜及铜合金 XRF 方法	未规定元素	无	波长色散 X-射	引用 EN 15063-1 中的校
	第2部分:常规方法			线荧光光谱法	准介绍
GB/T 223.79-2007	钢铁	硅、锰、磷、硫、铜、	0.01-5.00	X-射线荧光光	仅仅列出校准方式公式,
		铝、镍、铬、钼、钒、		谱法	无具体校正建议
		钛、钨、钕(13个)			
GB/T 36266-2018	不锈钢	锰、镍、铬、钼、铜、	0. 2-25	手持式X能量色	无分类校正相关介绍
		钛 (6 个)		散荧光光谱法	
				(半定量结果)	
YS/T 483-2022	铜及铜合金	铜、镍、锌、铁、铝、	0.05-99.5	波长色散 X-射	无分类校正相关介绍
		硅、铅、锰、磷、镁、		线荧光光谱法	
		硫、镍、铬、钼、钒、			
		钛、等(23个)			
YS/T 806-2020	铝及铝合金	硅、铁、铜、镁、锰、	0.0010-8.6	X-射线荧光光	对于有谱线重叠的元素,
		锌、镍、镓、钛、铬、		谱法	进行谱线重叠校正
		钒、铅、锡等(20个)			

图 1 ISO 17054:2010(E)测定元素和范围

Element	Concentration range, % (m/m) a
Si	0,05 to 1,5
Mn	0,05 to 5,0
P	0,005 to 0,035
Cr	10 to 25
Ni	0,1 to 30
Мо	0,1 to 6,5
Cu	0,02 to 1,5
Со	0,015 to 0,30
V	0,015 to 0,15
Ti	0,015 to 0,50
Nb	0,05 to 1,0

The concentration ranges specified, represents those ranges studied during the precision test. The procedure has the potential to be used outside those ranges <u>but</u> it needs to be validated by each laboratory in every case.

根据比对,目前 XRF 测定金属的标准中,无论是 ISO 国际标准、欧洲标准以及国内的国家标准或行业标准,尽管都有分类测定的描述,但通常寥寥数语、一笔带过,没有相关的分类示例;涉及到校准方面,要么简单列举校正方法的文字介绍,或者是简单列举某种校准公式,或者不加说明直接言重新校正(具体见下表 233),这些描述的确具有"标准"的指导性属性,但此类"务虚式校准"对于标准使用者的可操作性不强,按照标准不一定能够得出良好的测定结果,使用者需要多次试错才可能达到标准的某些测定效果;因为对于金属产品而言,牌号众多,纯金属和合金属于两种完全不同的测定对象,同一基体的不同合金,其校准方式也必然存在极大差别,既然标准都有多家实验室的复验,数据也具有吻合性,标准制修订中完全可以将测定结果吻合的、不同类别工作曲线的校正方法进行总结归纳(商用 XRF设备校准模型具有类似的数学基础),至少以推荐性的方式为标准读者或使用者以指导,可惜目前所见 XRF 金属类标准均没有相关的"推荐性校准"指导,例如某一系列某元素使用另一元素校正,这将很大程度上促进标准的普及型,特别是对于初次使用标准的初学者,能很大程度提高他们的经验和操作水平,增强标准的应用指导功能,很好的推广 XRF 相关标准。

表 233 部分标准的校准介绍

标准	校准描述
ISO 17054:2010(E) (EN 10315:2006)	If the calibration is still outside the control limits after a new standardization (reference measurement), a recalibration or calibration procedure is necessary.如果在新的标准化(参考测量)后校准仍在控制限值之外,则需要重新校准校准程序。
EN 15063-1:2014	$c_i = \left[a_0 + a_1 \times I_i + a_2 \times (I_i)^2\right] \times \left(1 + \sum_j \alpha_{ij} \times I_j\right)$
EN 15063-2:2006	If the calibration is still outside the control limits, check the whole measurement system carefully (x-ray-tube, detectors,) and after a new standardization (reference measurement), a recalibration or calibration procedure shall be undertaken.如果校准仍在控制范围之外,则应仔细检查整个测量系统(x 射线管、探测器等),并在进行新的标准化(参考测量)后,进行重新校准或校准程序。
GB/T 223.79-2007	$w_i = (aI_i^3 + bI_i + c) \times (1 + \Sigma d_j w_j) - \Sigma l_j w_j$ ($i \neq j$)
YS/T 483-2022	9.2.4 基体校准 参照仪器说明书,考虑共存元素和基体的差别所带来的影响,对测定值进行校准,得出有关相关系 数并存储。

对比国外相关 XRF 标准,30%-50%篇幅通常描述硬件相关规定,例如光管、晶体、真空

系统、滤光片等,反而软件校准的介绍很少涉及或语焉不详,此类标准具有"重硬件、轻软件"的明显特点,实际上 XRF 设备经过 70 多年的快速发展,硬件标准水平早已臻于成熟,质量极佳,标准再大篇幅的过分强调硬件已经不合时宜,影响 XRF 定量测定最重要的即为校正,特别是共存元素之间的相互校正,标准文本中"通用式校正"恰恰也是目前 XRF 分析标准中最欠缺的,也是最急需的内容。

本标准制定中对于某一系列,在多家测定数据吻合基础上,总结归纳了不同系列的校准方式,将校准方式用附录形式供使用者使用;本标准复验中已经显示出增加"校准方式"的明显效果,例如上海交通大学分析测试中心,2023年4月中旬安装新的XRF仪器,五月初利用本标准中"校准方式"附录做程序和校准,测定数据吻合度很好,相关人员也提高了XRF校准经验和操作水平。本标准在"校准方式"的经验总结方面具有初创性,并且效果明显。

综上所述,本标准具有分析元素全面、校准指导实用性强等特点,完全满足当前我国镁 及镁合金化学成分分析的要求,因此本标准达到国际先进水平。

七 与现行相关法律、法规、规章及相关标准,特别是强制性国家标准的协调配套情况

本标准所规定的内容, 完全满足国家法规要求。

八 重大分歧意见的处理经过和依据

无

九 标准性质的建议说明

该标准为推荐性国家标准

十 贯彻标准的要求和措施建议

- 1. 本标准属于推荐性国家标准,本标准起草单位后续会组织相关培训,对标准进行解读与培训;首先参编单位可获得相应的标准文本,随后可以在全行业进行宣传贯彻。
- 2. 给相关的第三方质量检验、质量控制部门提供文本标准资料,使其充分了解并掌握标准中的检测方法,做好示范性和推荐工作,同时在检验实践中及时发现问题,提出相关意见,不断提高修改完善,更好为镁行业发展服务。
 - 3. 建议本标准批准发布6个月后实施。

十一 废止现行相关标准的建议

无。

十二 其他应予说明的事项

无

镁及镁合金 XRF 分析方法国家标准编制小组 2023-12

附录 A 校准方案

由于镁及镁合金牌号类别较多,标准文本中采用的是分类测定原则,即元素类别相同或牌号相同的一类或几类待测样品分类测定,每个类别需要借助一套或多套系列标准样品(或经化学方法定值的系列内控样品)建立工作曲线,各元素工作曲线经过影响系数校正法校正后重新计算,经过准确度验证后测定待测样品。

收集各单位设备型号和校准方式如下:

单位名称	设备型号	校准模型	校正特点
	帕纳科 PW2403	飞利浦校正模型 (PH)	包含 α 系数、浓度或强度校正
中铝郑州院			系数
	岛津 XRF1800	德杨校正模型	α校正系数
导弹院	布鲁克 S8 Tiger	α系数系校正模型/可变α	α 校正系数/强加于所有元素
子 押院		系数法	的α系数
国家镁中心	布鲁克 S8	α系数校正模型/可变α系	α 校正系数/强加于所有元素
国家扶下心		数法	的α系数
国标北京	帕纳科-Zetium	德杨校正模型/可变α系数	α 校正系数/强加于所有元素
四小儿尔		法	的α系数

1. 纯镁系列校准方案

纯镁系列主要测定的是镁含量 99.5%以上纯镁样品中的杂质元素,根据目前纯镁工艺而言杂质元素的含量通常在 0.020%以下,并且杂质含量通常稳定,即元素的"散布范围小或浓度低",因此对于纯镁杂质的 XRF 测定中各元素不建议采用校正,本系列采用 G311-G316、E4131-E4137 两套标样制作;前述 3.6.1 中采用不校正方式得到优良数据,为了确定校准是否与必要,采用 XRF 测定值、准确度系数、线性系数三个共同决定。

附表 1.1A 纯镁系列-PW2403 校准对比

元素校正方式		测定对比			RMS	K 值(越小越好)
儿系		样品	化学值/标准值	XRF 测定值	CMD	N 但(越小域好)
Al	无校正	E4131	0.011	0.0110	0.00229	0. 0459
	Si(Lc 系数)			0.0112	0.00268	0. 0447
Zn	无校正	E4131	0.011	0.0104	0. 0142	0.0396
	Cu(Lc 系数)			0.0107	0. 0125	0.0360
Si	无校正	E4131	0.011	0. 0109	0.00095	0. 00260
	Al(Lc 系数)			0. 0110	0.00099	0. 00269
	Al (α系数)			0.0110	0.00097	0.00266
Mn	无校正	E4131	0. 017	0.0168	0.00066	0.00166
	Fe(Lc 系数)			0.0169	0.00065	0.00166
	Ni(Lc 系数)			0.0169	0.00067	0.00173

附表 1.1B 纯镁系列-XRF1800 校准对比

元素 校正方式		测定对比			准确度系数	线性系数
儿系		样品	化学值/标准值	XRF 测定值	任佣反系数	线性 系数
Al	无校正	E4131	0.011	0. 0109	0.003122	1.0000
	Si (dlj 系数)			0. 0089	0.008615	0. 9997
Zn	无校正	E4131	0.011	0. 0103	0.001309	0.9990
	Cu (dlj 系数)			0. 0103	0.001487	0. 9987
Si	无校正	E4131	0.011	0. 0109	0.001085	0.9994
	Al (dlj系数)			0. 0109	0.001085	0.9994
	Fe (dlj 系数)			0. 0109	0.001002	0. 9995
Mn	无校正	E4131	0. 017	0. 0171	0.000608	1.0000
	Fe (dlj 系数)			0. 0166	0.003489	0.9986
	Ni (dlj系数)			0. 0173	0.000471	1.0000

附表 1.2 纯镁系列-布鲁克 S8 Tiger 校准对比

11.0 21.0 21.0 12.0 Kill. 12.0 Ki								
元素	校正方式		测定对比		标准偏差	相关系数的平方		
儿系	权正刀式	样品	化学值/标准值(%)	XRF 测定值(%)	你性 洲左	14大尔奴的干刀		
A1	无校正			0.0112	0.0014	0. 99998		
	变化的α系数	G316	0. 011	0.0110	0.0016	0. 99998		
	Si (Lc 系数)			0.0110	0.0012	0. 99999		
Zn	无校正			0.0048	0.0009	0. 9978		
	变化的α系数	G316	0.004	0.0048	0.0008	0. 9980		
	Cu (Lc 系数)			0.0048	0.0008	0. 9980		
Si	无校正	0010	G316 0. 019	0.0189	0.0017	0. 9907		
	变化的α系数			0. 0200	0.0017	0. 9908		
	Al (Lc 系数)	6310		0.0196	0.0015	0. 9931		
	Al (α系数)			0.020	0.0018	0. 9914		
Mn	无校正			0.0173	0.0003	0. 99995		
	变化的α系数	G316	0.016	0.0167	0.0003	0. 99995		
	Fe(Lc 系数)			0.0166	0.0003	0. 99995		

Ni (Lc 系数)		0.0167	0.0003	0. 99995

1.3 国家镁中心校正与不校正数据对比

附表 2.3 纯镁系列-镁中心 S8-Tiger 校准对比

元素校正方式		测定对比			准确度系数	14 7 2 W
儿系	校正方式	样品	化学值/标准值	XRF 测定值	任佣及尔奴	相关系数
A1	无校正	E4131	0.011	0.0113	0.00133	0. 9996
	Si (Lc 系数)			0.0114	0.00165	0. 9996
Zn	无校正	E4131	0.011	0.0113	0.00224	0. 9991
	Cu (Lc 系数)			0.0115	0.00214	0. 9990
Si	无校正	E4131	0.011	0.0114	0.00168	0. 9995
	Al (Lc 系数)			0. 0117	0.00177	0. 9991
	无校正	E4131	0.017	0. 0164	0.00055	0. 9998
Mn	Fe (Lc 系数)			0.0166	0.00062	0. 9998
	Ni(Lc 系数)			0. 0169	0.00058	0. 9994

1.4 北京国标校正与不校正数据对比

附表 1.4 纯镁系列-Zetium 校准对比

元素校正方式		测定对比			RMS	K 值(越小越好)
儿系	权止刀八	样品	化学值/标准值	XRF 测定值	KWS	A. 国(成小成好)
A1	无校正	E4131	0.011	0.0081	0.00310	0.00792
	Si (α系数)			0. 0087	0.00360	0.00830
Zn	无校正	E4131	0.011	0. 0102	0.00109	0.00314
	Cu (α系数)			0. 0104	0.00106	0.00307
Si	无校正	E4131	0.011	0. 0096	0.00208	0.00626
	Al (DJ 模型)			0.0091	0.00208	0.00626
	Al (α系数)			0.0091	0.00204	0.00617
Mn	无校正	E4131	0. 017	0.0168	0.00083	0.00195
	Fe (DJ 模型)			0. 0171	0.00049	0.00122
	Ni (α系数)			0.0181	0.00388	0.00888

纯镁系列校准小结:由于其微量含量,在加入不同校正后 XRF 测定结果没有显著变化甚至测定结果偏离程度更大,准确度系数和线性系数也没有发生跨数量级的显著变化,甚至部分还出现大的"退步",因此相关校正属于多余校正,即纯镁系列可采用不校正方式。

2. 常规镁合金系列校准方案

常规镁合金主要测定镁铝锌系、镁锌锰系、镁铝硅系等目前大量生产的常规镁合金系列,其中铝、锌、锰、硅为除了基体镁之外的相对"主量"元素,例如 AZ91 中铝含量在 9%左右,ZM21 中没有主量的铝,但锌含量在 2%左右,AS31 中铝含量在 3%左右,硅含量在 1%左右,该系列中铝、锌、锰、硅属于浓度散布宽的基体元素,其中铝、锌最为典型;本系列采用G301-G305、E2600/E2611-E2616、E2631-E2635 三套标样制作;前述 3.6.2 中采用不校正方式得到优良数据,为了确定校准是否与必要,采用 XRF 测定值、准确度系数、线性系数三个共同决定。

附表 2.1A 常规镁合金系列-PW2403 校准对比

元素 校正方式	测定对比			RMS	K值(越小越好)	
儿系	权正万式	样品	化学值/标准值	XRF 测定值	KWIS	K 恒(越/)越好/

A1	无校正	E2616	9. 07	9. 185	0. 15711	0.06811
	Si (Lc 系数)			9. 174	0. 12373	0.05439
	Si (α系数)			9. 181	0. 12706	0.05545
	Zn (Lc 系数)			9. 162	0. 15403	0.06395
	无校正	AZ91	8. 80	8. 878	0. 15711	0.06811
	Si (Lc 系数)			8. 920	0. 12373	0.05439
	Si (α系数)			8. 987	0. 12706	0. 05545
	Zn (Lc 系数)			8. 833	0. 15403	0.06395
	无校正	AZ63	5. 685	5. 500	0. 15711	0.06811
	Si (Lc 系数)			5. 563	0. 12373	0.05439
	Si (α系数)			5. 572	0. 12706	0.05545
	Zn (Lc 系数)			5. 596	0. 15403	0.06395
Zn	无校正	E2612	2. 99	2. 972	0. 02113	0. 02273
	Al (Lc 系数)			2. 973	0.02040	0. 02109
	Al (α系数)			2. 992	0.02150	0. 02103
	Mn (Lc 系数)			2. 971	0.02164	0.02312
	无校正	AZ63	3. 02	2. 963	0.02113	0. 02273
	Al (Lc 系数)			2.961	0.02040	0. 02109
	Al (α系数)			2. 956	0.02150	0.02103
	Mn (Lc 系数)			2. 961	0.02164	0.02312
Si	无校正	E2634	1. 22	1. 286	0. 02587	0.03200
	Al (Lc 系数)			1. 283	0.02632	0.03179
	Al (α系数)			1. 287	0. 02722	0. 03241
	无校正	AS31	0.71	0. 694	0. 02587	0.03200
	Al (Lc 系数)			0.692	0.02632	0.03179
	Al (α系数)			0. 694	0. 02722	0.03241
Mn	无校正	G304	0. 57	0.561	0. 03579	0.04563
	Fe (Lc 系数)			0. 559	0.03694	0.04695
	Zn (Lc 系数)			0. 560	0. 03703	0.04692
	无校正	ZM21	0.91	0.890	0. 03579	0. 04563
	Fe (Lc 系数)			0.891	0.03694	0.04695
	Zn (Lc 系数)			0. 898	0. 03703	0.04692

附表 2.1B 常规镁合金系列-XRF1800 校准对比

元素	校正方式		测定对比		准确度系数	线性系数
儿系	仪止刀八	样品	化学值/标准值	XRF 测定值	世州汉尔奴	线性尔奴
Al	无校正	E2616	9. 07	8. 975	0.150364	0. 9998
	Si (dlj系数)			8. 956	0.133740	0. 9998
	Zn (dlj系数)			9.012	0.111912	0. 9999
	无校正	AZ91	8.80	8. 946	0.150364	0. 9998
	Si (dlj系数)			9. 014	0. 133740	0. 9998
	Zn (dlj系数)			8. 948	0.111912	0. 9999
Zn	无校正	E2612	2.99	2. 972	0.044379	0. 9996
	Al (dlj系数)			2. 985	0.043897	0. 9996

	Mn (d1j系数)			2. 961	0. 044064	0.9996
	mi (dij /kgg/			2.301	0.011001	0.3330
	无校正	AZ63	3.02	3.034	0. 044379	0.9996
	Al (dlj系数)			3. 032	0.043897	0. 9996
	Mn (dlj系数)			3. 047	0.044064	0. 9996
Si	无校正	E2634	1. 22	1. 300	0. 020522	0. 9995
	Al (dlj系数)			1. 814	0. 247233	0. 9243
	无校正	AS31	0.71	0.693	0.020522	0. 9995
	Al (dlj系数)			0. 770	0. 247233	0. 9243
Mn	无校正	G304	0. 57	0. 562	0. 027271	0. 9982
	Fe (dlj系数)			0. 562	0. 027190	0. 9982
	Zn (dlj系数)			0. 564	0. 026358	0. 9983
	无校正	ZM21	0.91	0. 936	0. 027271	0. 9982
	Fe (dlj系数)			0. 929	0.027190	0. 9982
	Zn (dlj系数)			0. 972	0. 026358	0. 9983

附表 2.2 常规镁合金系列-布鲁克 S8 Tiger 校准对比

	14-T-2- N		测定对比			In V. T. W. J. T
元素	校正方式	样品	化学值/标准值	XRF 测定值	- 标准偏差	相关系数的平方
A1	无校正			8. 978	0. 147	0. 9974
	变化的α系数			8. 985	0. 0847	0. 9991
	Si (Lc 系数)	E2616	9. 07	8. 959	0.140	0. 9976
	Si (α系数)			8.980	0.149	0. 9973
	Zn (Lc 系数)			9.010	0. 122	0. 9982
	无校正			4.835	0. 147	0. 9974
	变化的 α 系数			4.889	0. 0847	0. 9991
	Si (Lc 系数)	G302	4. 85	4.868	0.140	0. 9976
	Si (α系数)			4.831	0.149	0. 9973
	Zn (Lc 系数)			4.831	0. 122	0. 9982
Zn	无校正			2.98	0.027	0. 9994
	变化的α系数		2. 99	3. 017	0.019	0. 9997
	Al (Lc 系数)	E2612		2. 977	0. 0265	0. 9994
	Al (α系数)			2. 960	0.028	0. 9994
	Mn (Lc 系数)			2. 968	0.026	0. 9995
	无校正			0. 973	0.027	0. 9994
	变化的α系数			0. 942	0.019	0. 9997
	Al (Lc 系数)	G302	0.95	0. 975	0. 0265	0. 9994
	Al (α系数)			0. 980	0.028	0. 9994
	Mn (Lc 系数)			0. 973	0.026	0. 9995
Si	无校正			1. 260	0.020	0. 9985
	变化的α系数	E2634	1. 22	1. 264	0.020	0. 9984
	Al (Lc 系数)	12001	1. 22	1. 257	0.020	0. 9985
	Al (α系数)			1. 283	0.032	0.9960
	无校正	G305	0.41	0. 417	0.020	0. 9985

	变化的α系数			0. 421	0.020	0. 9984
	Al (Lc 系数)			0. 412	0.020	0.9985
	Al (α系数)			0. 463	0.032	0.9960
Mn	无校正			0.631	0.024	0. 9856
	变化的α系数	E2633	0.62	0. 625	0.025	0. 9847
	Fe (Lc 系数)	E2033		0. 634	0.024	0. 9858
	Zn (Lc 系数)			0. 631	0.024	0. 9857
	无校正			0. 244	0.024	0. 9856
	变化的α系数	G302	0. 256	0. 243	0.025	0. 9847
	Fe (Lc 系数)	0302	0.250	0. 243	0.024	0. 9858
	Zn (Lc 系数)			0. 244	0.024	0. 9857

2.3 国家镁中心校正与不校正数据对比

附表 2.3 常规镁合金系列-镁中心-S8-Tiger 校准对比

	113	110	测定对比			
元素	校正方式	样品	化学值/标准值	XRF 测定值	- 准确度系数	相关系数
A1	无校正	E2616	9.07	9. 152	0. 13541	0. 9989
	Si (Lc 系数)			9. 169	0. 13584	0. 9985
	Zn (Lc 系数)			9. 177	0. 14998	0. 9985
	无校正	AZ91	8.80	8. 852	0. 13541	0. 9989
	Si (Lc 系数)			8. 895	0. 13584	0. 9985
	Zn (Lc 系数)			8. 903	0. 14998	0. 9985
	无校正	AZ63	5. 685	5. 588	0. 13541	0. 9989
	Si (Lc 系数)			5. 542	0. 13584	0. 9985
	Zn (Lc 系数)			5. 552	0. 14998	0. 9985
Zn	无校正	E2612	2.99	2. 962	0. 01257	0. 9993
	Al (Lc 系数)			2. 972	0.01145	0. 9988
	Mn (Lc 系数)			2. 959	0. 01568	0. 9989
	无校正	AZ63	3.02	2. 998	0. 01257	0. 9993
	Al (Lc 系数)			2. 987	0. 01145	0. 9988
	Mn (Lc 系数)			2. 992	0.01568	0. 9989
Si	无校正	E2634	1.22	1. 254	0. 02587	0. 9996
	Al (Lc 系数)			1. 271	0.05632	0. 9972
	无校正	AS31	0.71	0. 725	0. 02587	0. 9996
	Al (Lc 系数)			0. 734	0.05632	0. 9972
Mn	无校正	G304	0. 57	0. 563	0. 03541	0. 9997
	Fe (Lc 系数)			0. 535	0. 04238	0. 9972
	Zn (Lc 系数)			0. 524	0.05022	0. 9975
	无校正	ZM21	0.91	0.895	0. 03541	0. 9997
	Fe (Lc 系数)			0. 874	0. 04238	0. 9972
	Zn (Lc 系数)			0. 878	0.05022	0. 9975

2.4 北京国标校正与不校正数据对比

附表 2.4 常规镁合金系列-Zetium 校准对比

	测定对比	DMC	V /5 / 56 J. 56 47 \
--	------	-----	----------------------

		样品	化学值/标准值	XRF 测定值		
Al	无校正	AZ63	5. 685	5. 574	0. 1643	0.0633
	Si (α系数)			5. 613	0. 1653	0.0620
	Zn (α系数)			5. 633	0. 1633	0.0630
Zn	无校正	E2612	2.99	2. 980	0. 0217	0. 0213
	Al (α系数)			2. 981	0. 0223	0. 0214
	Mn (α系数)			2. 982	0. 0224	0. 0214
	无校正	AZ63	3.02	2. 829	0. 0217	0. 0213
	Al (α系数)			2. 827	0. 0223	0.0214
	Mn (α系数)			2. 827	0. 0224	0.0214
Si	无校正	E2634	1. 22	1. 252	0. 0282	0. 0344
	Al (α系数)			1. 254	0. 0302	0. 0387
Mn	无校正	ZM21	0.91	0. 937	0. 0153	0. 0219
	Fe (α系数)			0. 930	0. 0152	0. 0223
	Zn (α系数)			0.968	0.0094	0.0142

常规镁合金校正小结:铝元素使用硅、锌等校正后测定结果没有显著变化,准确度系数和线性系数也没有发生跨数量级的显著变化,因此可不采用硅、锌等元素校正; (导弹院提出,其可变 a 系数法校正铝,出现正相关变化,因此可以使用可变阿尔法系数法校正铝)

锌元素被铝、锰等校正后测定结果没有显著变化,准确度系数和线性系数也没有发生跨数量级的显著变化,因此可不采用铝、锰元素校正;硅元素使用铝校正后 PW2403 设备的测定结果、准确度系数和线性系数均没有发生显著变化,但 XRF1800 的测定结果、准确度系数和线性系数均发生负相关的显著变化,证明方法使用铝元素校正硅元素在不同设备存在风险,因此硅元素不建议使用校正;

锰元素被铁或锌元素校正后 XRF 设备的测定结果、准确度系数和线性系数均没有发生显著变化,但 XRF1800 的锰元素使用锌元素校正后的测定结果发生负相关的显著变化,证明方法使用锌元素校正锰元素在不同设备存在风险,因此锰元素不建议使用校正。

3. 镁锌锆镁合金系列校准方案

镁锌锆镁合金主要测定包含锌和锆的镁合金系列,其中锌、锆为除了基体镁之外的相对"主量"元素,本系列采用 E5111-E5113 和化学定值的内控样品 MB1#-MB5#两套标样制作,该系列中锌和锆属于浓度散布宽的基体元素;前述 3.6.3 中采用不校正方式得到优良数据,为了确定校准是否与必要,采用 XRF 测定值、准确度系数、线性系数三个共同决定。

附表 3.1A 镁锌锆镁合金-PW2403 校准对比

元素 校正方式			测定对比	RMS	K 值(越小越好)	
儿系	权正刀式	样品	化学值/标准值	XRF 测定值	CMN	N 但(越小越好)
Zn	无校正	ZnZr1#	5.05	4. 886	0. 17724	0.07182
	Zr (α系数)			4. 888	0. 19030	0. 07783
Zr	无校正	ZnZr1#	0.38	0. 375	0. 03367	0. 04945
	Zn (Lc 系数)			0. 349	0. 02815	0. 04376

附表 3.1B 镁锌锆镁合金-XRF1800 校准对比

元妻	元素 - - - -		测定对比			线性系数
元素 校正方式	样品	化学值/标准值	XRF 测定值	准确度系数	线性 系数	
Zn	无校正	ZnZr1#	5.05	4. 875	0.116649	0. 9998

	Zr (dlj)			4. 873	0.116636	0. 9998
Zr	无校正	ZnZr1#	0.38	0. 397	0.017053	0. 9993
	Zn (d1j)			0.385	0. 012723	0.9996

附表 3.2 锌锆镁合金-布鲁克 S8 Tiger 校准对比

元素	校正方式		测定对比			相关系数的平方
70永		样品	化学值/标准值	XRF 测定值	标准偏差	1117(3/1991) 173
	无校正			5. 067	0.108	0. 9778
Zn	变化的 α 系数	ZnZr4#	5. 02	5. 056	0.103	0. 9799
	Zr (α系数)			5. 069	0.108	0. 9776
	无校正	ZnZr4#		0.408	0.031	0. 9819
Zr	变化的α系数		0. 38	0. 402	0.021	0. 9921
	Zn (Lc 系数)			0. 401	0.014	0. 9965

3.3 国家镁中心校正与不校正数据对比

附表 3.3 镁锌锆镁合金-镁中心-S8-Tiger 校准对比

元素	校正方式		测定对比			相关系数
儿系		样品	化学值/标准值	XRF 测定值	准确度系数	相大系数
Zn	无校正	ZnZr1#	5.05	5. 122	0. 24571	0.9915
	Zr (α系数)			5. 115	0. 28954	0.9908
Zr	无校正	ZnZr1#	0.38	0. 371	0. 04213	0.9990
	Zn (Lc 系数)			0. 369	0. 04111	0.9988

3.4 北京国标校正与不校正数据对比

附表 3.4 镁锌锆镁合金-Zetium 校准对比

元素	校正方式	测定对比			RMS	K值(越小越好)
儿系		样品	化学值/标准值	XRF 测定值	KMS	V (F(VQV),VQX)
Zn	无校正	ZnZr1#	5.05	4. 835	0. 1414	0. 0583
	Zr (α系数)			4.846	0. 1506	0. 0624
Zr	无校正	ZnZr1#	0.38	0. 367	0. 0364	0. 0528
	Zn (α系数)			0. 342	0. 0302	0. 0457

镁锌锆镁合金校正小结:在锌加入锆校正、锆加入锌校正后 XRF 测定结果没有显著变化,准确度系数和线性系数均没有发生跨数量级的变化,因此相关校正属于多余校正,即镁锌锆镁合金系列可采用不校正方式。

4. 镁锌铈镁合金系列校准方案

镁锌铈镁合金主要测定包含锌和锆的镁合金系列,其中锌、铈为除了基体镁之外的相对"主量"元素,本系列采用 E5121-E5127 标样制作,该系列中锌和铈属于浓度散布宽的基体元素;前述 3.6.4 中 Zn 被 Ce 校正方式得到优良数据,为了确定校准是否与必要,采用 XRF测定值、准确度系数、线性系数三个共同决定。

附表 4.1A 镁锌铈镁合金-PW2403 校准对比

元素	校正方式	测定对比			RMS	K 值(越小越好)
儿系		样品	化学值/标准值	XRF 测定值	KMS	N 国(风小风灯)
Zn	无校正	ZnCe7#	4. 47	4.004	0. 30826	0. 15372
	Ce (α系数)			4. 357	0. 08189	0.04016

附表 4.1B 镁锌铈镁合金-XRF1800 校准对比

元素		校正方式	测定对比			准确度系数	线性系数
	儿系	权止刀八	样品	化学值/标准值	XRF 测定值	任州汉尔奴	线性尔兹
	Zn	无校正	ZnCe7#	4. 47	3. 8569	0. 324288	0. 9976
		Ce (dlj)			4. 3959	0. 133189	0. 9996

附表 4.2 锌铈镁合金-布鲁克 S8 Tiger 校准对比

元素	校正方式		测定对比		- 标准偏差	相关系数的平方
儿系		样品	化学值/标准值	XRF 测定值	你推測左	相大尔奴的工力
Zn	无校正	ZnCe7#	4. 37	4. 031	0.36	0.9120
	变化的 α 系数			4. 424	0.046	0.9985
	Ce (α系数)			4. 137	0. 27	0.9509
	Ce (Lc 系数)			4. 428	0.039	0. 9989

4.3 国家镁中心校正与不校正数据对比

附表 4.3 镁锌铈镁合金-镁中心-S8-Tiger 校准对比

	元素	校正方式	测定对比			准确度系数	相关系数
儿系		1人工/1八	样品	化学值/标准值	XRF 测定值	1世州/又尔奴	相人示奴
	Zn	无校正	ZnCe7#	4. 47	4. 355	0. 55241	0. 9895
		Ce (Lc 系数)			4. 422	0. 09358	0.9962

4.4 北京国标校正与不校正数据对比

附表 4.4 镁锌铈镁合金-Zetium 校准对比

元素	校正方式	测定对比			RMS	K 值(越小越好)
儿系		样品	化学值/标准值	XRF 测定值	KMS	K 恒(越小越好)
Zn	无校正	ZnCe7#	4. 47	4. 034	0. 3666	0. 1792
	Ce (α系数)			4. 422	0. 0409	0. 0201

镁锌铈镁合金校正小结:在锌加入铈校正后 XRF 测定结果发生显著变化,校正结果更接近于化学值,准确度系数和线性系数均同时发生跨数量级的变化,因此相关校正属于有效校正,即镁锌锆镁合金系列可采用 Zn 被 Ce 校正方式。

5. 锌钇铜铝镁合金系列校准方案

锌钇铜铝镁合金主要测定包含锌、钇、铜、铝的镁合金系列,其中锌、钇、铜、铝为除了基体镁之外的相对"主量"元素,本系列采用 E5131-E5135、E9141-E9146、E9151-E9159 标样制作,该系列中锌和铈属于浓度散布宽的基体元素,需要注意标样中含有很高铜,目前无对应的牌号,实际测定中主要用于高锌高铝的 ZA 系列样品测定;前述 3.6.5 中 Zn 采用 Cu 校正方式,为了确定校准是否与必要,采用 XRF 测定值、准确度系数、线性系数三个共同决定。

附表 5.1A 锌钇铜铝镁合金-PW2403 校准对比

元素	校正方式		测定对比			K值(越小越好)
儿系		样品	化学值/标准值	XRF 测定值	RMS	I E (ASA)
Zn	无校正	ZnY-3#	4.03	3. 932	0. 16876	0. 07577
	Cu(Lc+α系数)			3. 939	0.09652	0.04004
	Cu (Lc 系数)			3. 932	0. 12901	0. 05456
	无校正	ZA73	7. 37	7. 365	0. 16876	0. 07577

	Cu(Lc+α系数)			7. 354	0.09652	0. 04004
	Cu(Lc 系数)			7. 365	0. 12901	0. 05456
Cu	无校正	ZnY-3#	2.96	2. 934	0. 17119	0. 08663
	Zn (Lc 系数)			2. 880	0. 09349	0. 05330

附表 5.1B 锌钇铜铝镁合金-XRF1800 校准对比

元素	校正方式		测定对比		准确度系数	线性系数
儿系		样品	化学值/标准值	XRF 测定值	1世州/又尔奴	线性尔奴
Zn	无校正	ZnY-3#	4.03	3. 770	0. 281676	0. 9984
	Cu (Lc 系数)			3. 892	0. 164799	0. 9994
	无校正	ZA73	7. 37	7. 560	0. 281676	0. 9984
	Cu (Lc 系数)			7. 329	0. 164799	0. 9994
Cu	无校正	ZnY-3#	2.96	2. 826	0. 164711	0. 9988
	Zn (Lc 系数)			2. 835	0.110618	0. 9994

附表 5.2 锌钇铜铝镁合金-布鲁克 S8 Tiger 校准对比

元素	校正方式		测定对比		标准偏差	相关系数的平方
儿系	校正万式	样品	化学值/标准值	XRF 测定值	你任佣左	相大系数的干力
Zn	无校正	E9159	6.60	5. 24	0.68	0.9140
	变化的α系数			6. 30	0.15	0. 9957
	Cu(Lc 系数)			6.70	0.14	0.9964
	无校正	E9152	2. 28	1.85	0.68	0.9140
	变化的α系数			2. 12	0.15	0. 9957
	Cu(Lc 系数)			2. 17	0.14	0.9964
Cu	无校正	E9152	3. 46	3. 44	0.11	0.9896
	变化的α 系数			3. 44	0.097	0.9924
	Zn(Lc 系数)			3. 52	0.043	0. 9985

注:Zn用Kβ线

5.3 国家镁中心校正与不校正数据对比

附表 5.3 锌钇铜铝镁合金-镁中心-S8-Tiger 校准对比

元素	校正方式		测定对比		准确度系数	相关系数
儿系	仪止刀八	样品	化学值/标准值	XRF 测定值	任明汉尔奴	和大尔奴
Zn	无校正	ZnY-3#	4.03	3. 824	0. 20145	0. 9960
	Cu(Lc 系数)			3. 982	0. 06578	0. 9985
	无校正	ZA73	7. 37	7. 211	0. 20145	0. 9960
	Cu (Lc 系数)			7. 332	0. 06578	0. 9985
Cu	无校正	ZnY-3#	2.96	2. 955	0. 13245	0. 9990
	Zn(Lc 系数)			2. 949	0. 15231	0. 9987

5.4 北京国标校正与不校正数据对比

附表 5.4 锌钇铜铝镁合金-Zetium 校准对比

HIAC OF I A MANANCIA POLICIA MANANCIA						
元素	校正方式		测定对比		RMS	K值(越小越好)
儿系	权止力式	样品	化学值/标准值	XRF 测定值	KWS	N.国(应小成好)
Zn	无校正	ZnY-3#	4.03	3. 807	0. 2070	0. 1024
	Cu (α系数)			3. 975	0. 0869	0. 0430

Cu	无校正	ZnY-3#	2. 96	2. 900	0. 0992	0.0619
	Zn (α系数)			2. 901	0.1108	0.0677

镁锌铜铝钇合金系列小结: 锌元素使用铜校正后的测定结果、准确度系数和线性系数均 发生显著变化,说明锌元素有被铜元素校正的必要性,因此从标准普适性角度,建议铜元素 校正锌元素;

铜元素被锌元素校正后测定结果、准确度系数和线性系数均没有发生特别显著变化,因此铜元素不建议使用校正。

6. 镁钕镁合金系列校准方案

镁钕镁合金主要测定包含镁钕的镁合金系列,其中钕为除了基体镁之外的相对"主量"元素,本系列采用 E6331-E6336 标样制作,该系列中钕属于浓度散布宽的基体元素,由于此套标样中只有单一的钕元素,上述 3.6.6 中无校正也能得到优良结果;必须注意,对于单一定值的样品,程序中只有单个元素无法用其他元素校正,此类状况属于特殊情况,但必须注意如果使用其他类标样时,如有钕以外的元素是必须考察钕元素和其他元素的相互影响。

7. 钆钇锌锆镁合金系列校准方案

钆钇锌锆镁合金主要测定包含钆、钇、锌、锆的镁合金系列,其中钆、钇、锌、锆为除了基体镁之外的相对"主量"元素,本系列采用经化学定值的 GdY51-B、GdY63-B、GdY82-B、GdY93-B、GdY94-B-C#、GdY94-B-X#、GdY114-B 等内控样品制作,该系列中钆、钇、锌、锆属于浓度散布宽的基体元素,其中钆钇最为典型;前述 3.6.8 中 Gd 采用 Y 元素校正、Y 元素采用 Gd 元素校正方式得到优良数据,为了确定校准是否与必要,采用 XRF 测定值、准确度系数、线性系数三个共同决定。

7.1 中铝郑州研究院校正与不校正数据对比

测定对比 校正方式 RMS K值(越小越好) 元素 样品 化学值/标准值 XRF 测定值 无校正 GdY63-B 5.49 5.209 0.2913 0.11107 Y (a 系数) 5.555 0.16990 0.05934 0.41684 0, 23243 Y 无校正 GdY63-B 3, 16 3, 266

附表 7.1A 钆钇锌锆镁合金-PW2403 校准对比

H/1	11 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	13.50
附表 7.1B	钆钇锌锆镁合金-XRF1800	校准对比

4.017

0.06205

0.03782

元素	校正方式		测定对比		准确度系数	线性系数	
儿系	仪止刀八	样品	化学值/标准值	XRF 测定值	任佣反尔奴	线注尔奴	
	无校正	GdY63-B	5. 49	5. 182	0. 233036	0. 9996	
Gd	Y (d1j)			5. 437	0.099601	0. 9999	
	无校正	GdY63-B	3. 16	3. 876	0. 375968	0. 9924	
Y	Gd (d1j)			3. 184	0.061662	0. 9998	

7.2 导弹院校正与不校正数据对比

Gd (α系数)

附表 7.2 钆钇锌锆镁合金-布鲁克 S8 Tiger 校准对比

元素	校正方式		测定对比		标准偏差	相关系数的平方
儿系	仪正刀式	样品	化学值/标准值	XRF 测定值	你任佣左	相大系数的十万
Gd	无校正	GdY63-B	5. 49	5. 10	0. 24	0. 9855
	变化的α系数			5. 38	0.14	0. 9947
	Y (Lc 系数)			5. 49	0.15	0. 9945
Y	无校正	GdY63-B	3. 16	3. 92	0.37	0. 8809

变化的 α 系数		3. 13	0.049	0. 9978
Gd (Lc 系数)		3. 16	0.039	0. 9986

7.3 国家镁中心校正与不校正数据对比

附表 7.3 钆钇锌锆镁合金-镁中心-S8-Tiger 校准对比

元素	校正方式		测定对比		准确度系数	相关系数
儿系	1人工/1人	样品	化学值/标准值	XRF 测定值	1世明/又尔奴	和人尔奴
Gd	无校正	GdY63-B	5. 49	5. 195	0. 35741	0. 9981
	Y (Lc 系数)			5. 481	0. 08542	0. 9990
Y	无校正	GdY63-B	3. 16	3. 315	0. 55214	0. 9942
	Gd(Lc 系数)			3. 184	0. 03358	0. 9977

7.4 北京国标校正与不校正数

附表 7.4 钆钇锌锆镁合金-Zetium 校准对比

元素	校正方式		测定对比		RMS	K值(越小越好)
儿系	校正刀式	样品	化学值/标准值	XRF 测定值	CMN	N 但(越小越灯)
Gd	无校正	GdY63-B	5. 49	5. 279	0. 2004	0. 0734
	Υ (α 系数)			5. 525	0. 1447	0.0514
Y	无校正	GdY63-B	3. 16	3. 922	0. 1863	0. 1174
	Gd (α系数)			3. 157	0. 0422	0. 0258

钆钇锌锆镁合金校准小结: 在 Gd 采用 Y 元素校正、Y 元素采用 Gd 元素校正方式 XRF 测定结果发生了显著变化(Y 未校和化学值差别超过 G. G0. G0.

附录 B 关于高成分合金中中微量元素的测定方法

GdY63-B 中钆、钇很高含量,但锌含量很低,ZA73/ZA53 中锌和铝等元素含量很高但锰、铜等元素等超出曲线下限的元素如何测定?针对此问题,中铝郑州研究院提出利用纯镁工作曲线测定。

纯镁测定方案是利用纯镁程序直接测定 GdY63-B、ZA73、ZA53 中的锌、锰、铜、镍元素,测定条件和纯镁测定曲线条件一致。

将 GdY63-B、ZA73、ZA53 重新铣床加工后在纯镁程序进行测定,测定结果见附表 B1-B3, 其中 ZA73 和 ZA53 中含有大量锌,仅给出铜、锰和镍的结果。多家实验室的测定 数据表明化学方法和 XRF 的测定方法相吻合。

B. 1 GdY63-B 中铜锰锌的测定

主编单位和一验单位的 GdY63-B 测定数据见附表 B1。

附表 B1 GdY63-B 的纯镁 XRF 测定

单位:%

样品	Cu	Mn	Zn	Ni
中铝郑州院	0.0128	0.0109	0.0032	0.0076
导弹院	0.0125	0.0119	0.0034	0.0081
镁中心	0.0131	0.0116	0.0036	0.0080
GdY63-BXRF 平均值	0.0128	0.0115	0.0034	0.0079
GdY63-B 化学值	0.014	0.013	0.0040	0.0090

B. 2 ZA73 中铜锰的测定

主编单位和一验单位的 ZA73 测定数据见附表 B2。

附表 B2 ZA73 的纯镁 XRF 测定

单位: %

样品	Cu	Mn	Ni
中铝郑州院	0.0016	0.0188	0.0021
导弹院	0.0024	0.0190	0.0021
镁中心	0.0020	0.0182	0.0023
ZA73 XRF 平均值	0.0020	0.0187	0.0022
ZA73 化学值	0.0022	0.020	0.0028

B. 3 ZA53 中铜锰的测定

主编单位和一验单位的 ZA53 测定数据见附表 B3。

附表 B3 ZA53 的纯镁 XRF 测定

单位: %

样品	Cu	Mn	Ni
中铝郑州院	0.0014	0.0182	0.0014

导弹院	0.0016	0.0188	0.0012
镁中心	0.0019	0.0182	0.0016
ZA53 XRF 平均值	0.0016	0.0184	0.0014
ZA53 化学值	0.0020	0.020	0.0021