INTERNATIONAL STANDARD

ISO 10142

> First edition 1996-09-15

Carbonaceous materials for use in the production of aluminium — Calcined coke — Determination of grain stability using a laboratory vibration mill

Produits carbonés utilisés pour la production de l'aluminium — Coke calciné — Détermination de la stabilité du grain par broyeur à billes oscillant

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 10142 was prepared by Technical Committee ISO/TC 47, Chemistry, Subcommittee SC 7, Aluminium oxide, cryolite, aluminium fluoride, sodium fluoride, carbonaceous products for the aluminium industry.

© ISO 1996

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Licensed to: Song, Guanyu Mr Downloaded: 2023-02-10 Single user licence only, copying and networking prohibited

Carbonaceous materials for use in the production of aluminium — Calcined coke — Determination of grain stability using a laboratory vibration mill

1 Scope

Calcined coke with poor mechanical strength may become degraded during mixing. Poor grain stability will affect the grain size and may result in poor quality of baked blocks.

This International Standard describes a laboratory vibration mill method for the determination of the grain stability of calcined coke for the manufacture of carbon products used in the manufacture of aluminium.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 3310-1:1990, Test sieves — Technical requirements and testing — Part 1: Test sieves of metal wire cloth.

ISO 6375:1980, Carbonaceous materials for the production of aluminium — Coke for electrodes — Sampling.

3 Principle

The 4 mm to 8 mm fraction of a sample of calcined coke is subjected to the grinding action of a laboratory vibration mill and the percentage residue retained on a specified sieve screen is measured.

4 Apparatus

4.1 Laboratory vibration mill, having two grinding vessels, each filled with 1 kg of clean, hard steel balls, diameter 10 mm \pm 0,4 mm. The main features of the mill are shown in figures 1 to 5.

The mill (1) and drive motor (9) are mounted on a common base plate (2). The grinding vessels (7, 8) are installed in the body of the mill, which is supported by four soft, flat springs (4). The spring suspension system is designed to allow the machine to be operated without any fastenings or anchorage. The grinding vessels are secured by adjustable straps (5) which have a quick-release catch (13). The oscillator is supported on a bearing (6), fitted to the body of the mill, and is driven by the motor (9) via a special clutch (3) and a hollow flexible shaft (12).

The peak-to-peak amplitude of the vibration shall be 4 mm \pm 0,5 mm. A reference disc is fitted to the front of the machine to measure the amplitude of vibration.

The motor shall be capable of 1 450 rpm to 1 470 rpm. The bearing housing (11) is rigidly connected to the bearings (6). The shaft (12) rotates inside the bearings with two steel imbalance discs (10) attached and is connected to the motor via the clutch (3). The imbalance discs are shown in figure 4.

The imbalance discs rotate eccentrically and the entire oscillating mass follows with a phase lag of 180°, supported by the springs.

Each grinding vessel (see figure 5) has a total volume of 1 litre and an effective volume of 0,3 litres. It is closed by a lid (15) with a rubber sealing ring (16). The lid is held in place by a clamp (17) fitted with a wing nut (18).

The electric motor is linked to a timer switch having a precision of ± 2 s.

Dimensions in millimetres

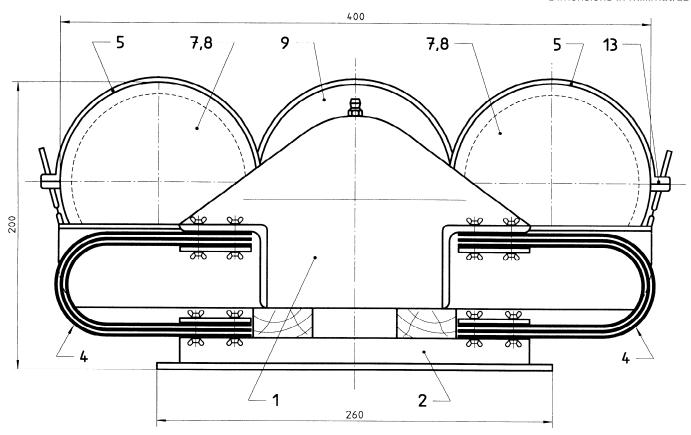


Figure 1 — Laboratory vibration mill — Front view

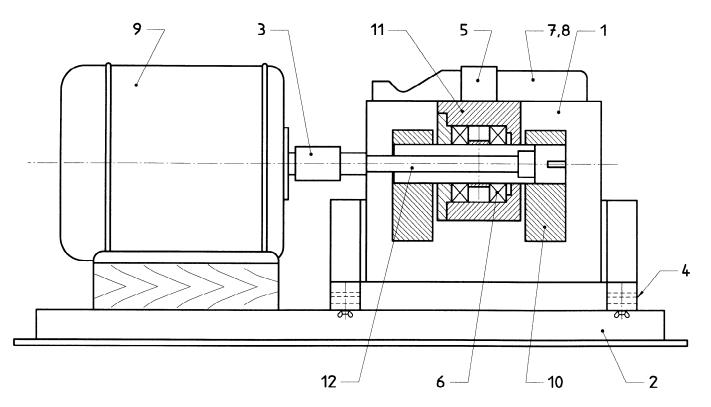


Figure 2 — Laboratory vibration mill — Side view

Licensed to: Song, Guanyu Mr Downloaded: 2023-02-10

Single user licence only, copying and networking prohibited

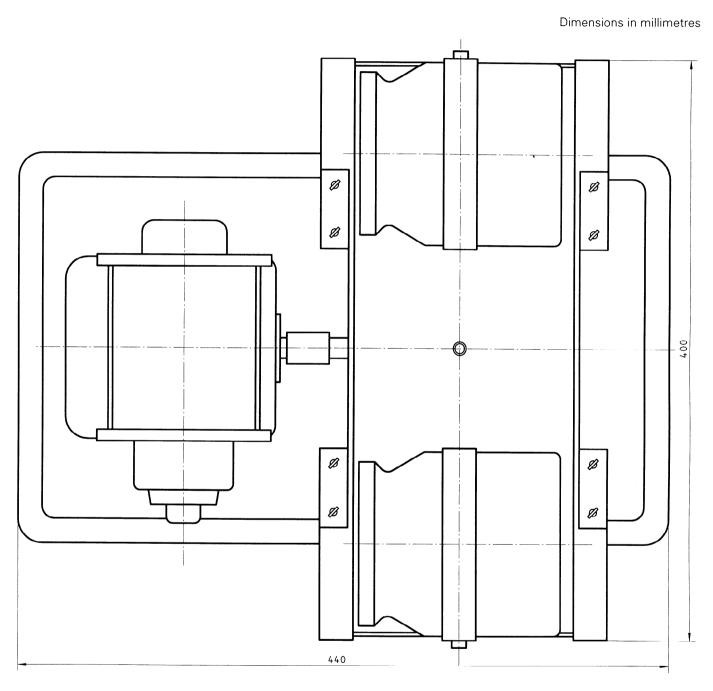


Figure 3 — Laboratory vibration mill — Ground plan

ISO 10142:1996(E) © ISO

Dimensions in millimetres

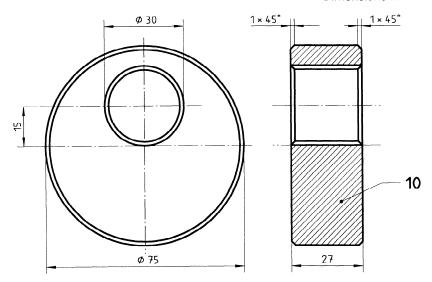


Figure 4 — Imbalance discs

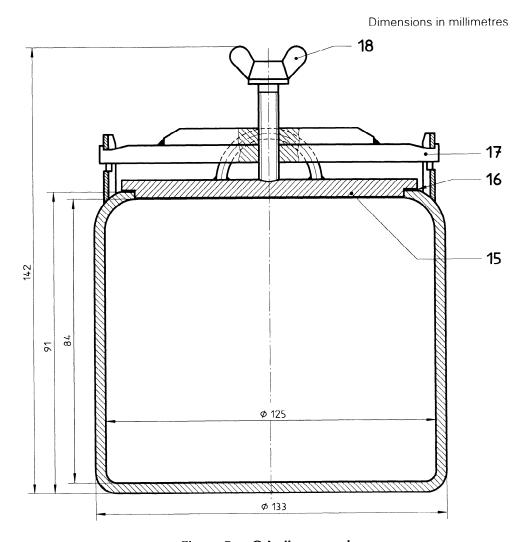


Figure 5 — Grinding vessel

Licensed to: Song, Guanyu Mr Downloaded: 2023-02-10

Single user licence only, copying and networking prohibited

4.2 Sieves, mesh size 4 mm and 8 mm, conforming to the requirements of ISO 3310-1.

5 Sampling and preparation of the test sample

Sample in accordance with ISO 6375. Do not precrush the sample. Sieve the sample to collect 200 g of coke of grain size between 4 mm and 8 mm.

6 Procedure

Carefully place 1 kg of the steel balls and 100 g \pm 0,01 g of the 4 mm to 8 mm fraction of the sieved test sample in each grinding vessel and close the lid. Attach the vessels to the vibration mill.

Turn the mill on and grind the sample for 3,5 min as measured by the timer switch.

Carefully empty the contents of one vessel on to an 8 mm sieve, placed on top of a 4 mm sieve. Screen by hand, using approximately 60 horizontal movements in about half a minute. The steel balls will remain on the 8 mm sieve, and part of the granular material will remain on the 4 mm sieve.

Weigh the portion of granular material which remains on the 4 mm sieve to the nearest 0,01 g.

Repeat with the contents of the other vessel.

7 Expression of results

The grain stability GS of the calcined coke, expressed in per cent, is given by the equation

$$GS = \frac{GS_1 + GS_2}{2} = \frac{1}{2} \left(\frac{m_3}{m_1} \times 100 + \frac{m_4}{m_2} \times 100 \right)$$

where

GS₁ is the grain stability for vessel 1;

GS₂ is the grain stability for vessel 2;

 m_1 is the mass, in grams, of test sample placed in vessel 1;

m₂ is the mass, in grams, of test sample placed in vessel 2;

 m_3 is the mass, in grams, of test sample from vessel 1 retained on the 4 mm sieve;

 m_4 is the mass, in grams, of test sample from vessel 2 retained on the 4 mm sieve.

If GS_1 and GS_2 differ by less than $\sqrt{2}\times$ the repeatability of the method, report the result, GS, as the mean of the simultaneous duplicate determinations GS_1 and GS_2 , to the nearest 0,01 %.

If GS_1 and GS_2 differ by more than $\sqrt{2}$ x the repeatability of the method, repeat the procedure detailed in clause 6. If the difference between the mean result of each pair of simultaneous duplicate tests is less than the repeatability of the method, report the result as the mean of the means. Otherwise reject all the results and repeat the determination.

8 Precision

8.1 Repeatability

The results of duplicate determinations, carried out at different times in the same laboratory by the same operator with the same apparatus, on representative portions taken from the same test sample, should not differ by more than 2 % absolute.

8.2 Reproducibility

The means of the results of duplicate determinations, carried out in each of two different laboratories, on representative portions taken from the same sample after the last stage of sample preparation, should not differ by more than 3 % absolute.

9 Test report

The test report shall include the following particulars:

- a) a reference to this International Standard;
- b) all details necessary for identification of the sample;
- c) the result of the test;
- d) the date of the test;
- e) details of any unusual features noted during the determination;
- f) details of any operation not included in this International Standard or regarded as optional.

ISO 10142:1996(E) © ISO

ICS 71.100.10

Descriptors: extractive metallurgy, aluminium, electrodes, carbonaceous materials, granular materials, coke, tests, determination, stability, sieve analysis.

Price based on 5 pages