# 铪化学分析方法

第 12 部分: 痕量杂质元素的测定

编

制

说

明

(征求意见稿)

西安汉唐分析检测有限公司 2019 年 11 月

## 给化学分析方法 第 12 部分: 痕量杂质元素的测定 编制说明

## 一、 工作简况

## 1.1 项目背景

铪是一种重要的战略材料,目前其高纯金属及相应的化合物已经被广泛应用于国民经济和国防建设的诸多领域中,尤其是在核工业和现代陶瓷产业。金属铪具有高熔点、大的中子吸收截面,在过热中子吸收范围内具有良好的共振吸收,同时具有优异的机械加工性能、高温耐腐蚀和抗氧化性好、吸气能力强等优点,广泛应用于核反应堆中作为控制棒材料使用,在国内外被大量地应用于动力堆、沸水堆及其它试验堆中,也可作为导弹和喷气式发动机中的结构材料,制造喷管、阀门及其它一些耐高温零件;铪粉还可用作火箭推进剂;铪也可以作为超耐热不锈钢及高熔点材料的合金元素,用于提升其抗蠕变的延展性和强度。此外,铪还具有较低的电子逸出功、硬度大等优点,可应用于等离子切割、半导体镀膜、光学镀膜、航空航天以及硬质合金等领域。因此金属铪具有很高的应用价值,目前国内外科技工作者已经开始广泛关注金属铪,并对其进行了大量且逐步深入的研究。金属铪及其合金的研究与开发不但可以为相关产业带来极大的经济效益,同时也对我国核工业技术的发展前进有着难以估量的重要意义。

因此制/修订铪中杂质铝、硼、钴、铬、铜、铁、镁、锰、钼、铌、镍、铅、锡、钽、钛、钒和钨量的 分析方法行业标准,准确测定铪中多种杂质含量,对保证产品质量具有重要指导作用。

本标准旨在确定一种准确可靠的分析方法测定铪中多种杂质含量的方法。本标准采用电感耦合等离子体质谱法,方法稳定,灵敏度更高,检测范围更宽,测定范围: 0.0001%~0.010%。充分满足我国军用和民用铪的检测要求。

#### 1.2 任务来源

根据《工业和信息化部办公厅关于印发 2018 年第二批行业标准制修订计划的通知》(工信厅科〔2018〕 31号)精神,由西安汉唐分析检测有限公司负责起草《铪化学分析方法 第 12 部分:痕量杂质元素的测定》行业标准,国标(北京)检验认证有限公司、广东省工业分析检测中心、国核宝钛锆业股份公司、宝鸡钛业股份有限公司、西部新锆核材料科技有限公司、长沙矿冶研究院。参加起草。计划编号为 2018-0567T-YS,项目完成年限为 2020年。

#### 1.3 标准项目编制组情况

西安汉唐分析检测有限公司是西北有色金属研究院(集团)下属的第三方检测机构。1965年成立至今,公司已在西安宝鸡两地三区建成标准化实验室,检测面积 10000 余平方米,设备 200 余台(套),设备资产上亿元。现有员工 124 名,其中技术人员 70 余名(教授 8 名,高级工程师 32 名,注册计量师 10 名)。公司是国内最大的钛合金检测机构、国内最全面的金属复合材料检测机构、国内唯一核电堆芯材料的检测机构、金属材料全领域检测机构。

公司是中国有色金属工业西北质量监督检验中心、陕西省有色金属产品质量监督检验站、陕西省有色金属材料分析检测与评价中心、陕西省核工业用金属材料检测与评价服务平台、稀有金属检测信息化管理及共享平台、稀有金属材料安全评估与失效分析中心、工业(稀有金属)产品质量控制和技术评价实验室的主体单位,同时被国家质量监督检验检疫总局确定为钛及钛合金加工产品、铜及铜合金管材生产许可证检验机构实施单位,先后通过国家认证认可监督委员会(CMA)、中国合格评定国家认可委员会(CNAS)和国防科技工业实验室认可委员会(DILAC)认证,是由政府部门授权、具有法定第三方公正地位的产品质量检验机构。

本部分起草单位:西安汉唐分析检测有限公司、国标(北京)检验认证有限公司、广东省工业分析检测中心、国核宝钛锆业股份公司、宝鸡钛业股份有限公司、西部新锆核材料科技有限公司、长沙矿冶研究院。本部分主要起草人:马晓敏、×××、×××。

## 1.4 主要工作过程

西安汉唐分析检测有限公司在接到标准制订任务后,成立了标准编制组,并召开了标准项目编制启动会议,对标准编写工作进行了部署和分工,主要工作过程经历了以下几个阶段。

## 1.4.1 起草阶段

- (1) 2018 年 7 月,接到《工业和信息化部办公厅关于印发 2018 年第二批行业标准制修订计划的通知》 (工信厅科〔2018〕31 号)。
- (2) 2018 年 7 月 25 日~27 日,在哈尔滨有色金属标准工作会议上,形成《铪化学分析方法 第 12 部分: 痕量杂质元素的测定》标准任务落实会会议纪要,确定了由国标(北京)检验认证有限公司为第一验证单位,广东省工业分析检测中心、国核宝钛锆业股份公司、宝鸡钛业股份有限公司、西部新锆核材料科技有限公司、长沙矿冶研究院为第二验证单位。
- (3) 2018 年 9 月,组建《铪化学分析方法 第 12 部分:痕量杂质元素的测定》起草小组:撰写开题报告,落实课题组长及课题成员的任务,确定标准编审原则。
- (4) 2019 年 3 月,完成相应分析方法样品的收集和相关研究工作,形成讨论稿、研究报告、征求意见表等,交国标(北京)检验认证有限公司、广东省工业分析检测中心、国核宝钛锆业股份公司、宝鸡钛业股份有限公司、西部新锆核材料科技有限公司、长沙矿冶研究院,并连同验证样品一起分别寄往各验证单位。
- (5) 2019 年 6 月,陆续收到各验证单位的研究报告及反馈意见,对参与验证单位的意见和建议进行汇总处理,对讨论稿进行修改,完善实验报告,撰写编制说明。
- (6) 2019 年 6 月 25 日~6 月 27 日,参加全国稀有金属标准化技术委员会在青岛召开的标准讨论会; 会上宝钛集团有限公、朝阳金达钛业股份有限公司、西部新锆核材料科技有限公司、广州有色金属研究院、 宁夏东方钽业股份有限公司、国核宝钛锆业股份公司、北矿检测技术有限公司、西部金属材料股份有限公 司等单位的二十余位专家代表,会上各位专家对本标准(讨论稿)提出了修改意见。
- (7) 青岛会议结束之后,标准编制组根据讨论结果,对讨论稿进行进一步的修改完善,形成了《铪化学分析方法 第 12 部分: 痕量杂质元素的测定》征求意见稿。

## 二、标准编制原则

- 2.1 符合性:该标准按照 GB/T 1.1—2009《标准化工作导则 第1部分:标准的结构和编写》、GB/T 20001.4—2015《标准编写规则 第4部分:试验方法标准》、GB/T 6379.2—2004《测量方法与结果的准确度》的要求进行了编写。
- 2.2 合理性:反映当前国内各生产企业的技术水平,宜于应用,经济上合理,兼顾现有资源的合理配置。
- 2.3 先进性:本标准涉及的内容,技术水平不低于当前国内先进水平。

## 三、 标准主要内容的确定依据

本标准是首次制定,并且在充分调研了生产的实际水平后完成的。

#### 3.1 多种杂质元素测量范围的确定

在制定本标准中多种杂质元素测定范围时,参考了标准 YS/T 399—2013《海绵铪》中多种杂质元素的含量,主要参考其中原子能级海绵铪要求,并在此基础上结合日常检测样品的实际情况,最终确定出本标

准中铝、硼、镉、钴、铬、铜、铁、镁、锰、钼、铌、镍、铅、锡、钽、钛、铀、钒和钨量元素的测定范围为 0.0001% ~ 0.010 %。

## 3.2 溶样酸的选择

铪可用氢氟酸在常温条件下溶解,但在溶液底部往往会出现少许黑色不溶物,属于难溶的碳化物或氮化物,可通过加硝酸并加热使之完全溶解。通过试验考察了不同氢氟酸和硝酸用量条件下,样品的溶解情况,最终确定采用 2 mL 氢氟酸和 0.5 mL 硝酸溶解样品。

#### 3.3 测定同位素的选择

按照被测元素同位素丰度高和无干扰的原则进行待测元素同位素选择,各元素测定同位素如表 1 所示。在质谱检测过程中,绝大部分的元素的测定选择标准模式,但因 Fe 元素与载气 Ar 气所产生的 ArO 存在严重的干扰,所以在本实验中对 Fe 元素的测定采取碰撞模式进行检测。

|    |     |        | )-1 - 14- b |
|----|-----|--------|-------------|
| 元素 | 同位素 | 天然丰度/% | 测量模式        |
| Al | 27  | 100.00 | 标准模式        |
| В  | 11  | 80.10  | 标准模式        |
| Cd | 116 | 7.49   | 标准模式        |
| Со | 59  | 100.00 | 标准模式        |
| Cr | 52  | 83.79  | 标准模式        |
| Cu | 63  | 69.17  | 标准模式        |
| Fe | 57  | 2.12   | 碰撞模式        |
| Mg | 24  | 78.99  | 标准模式        |
| Mn | 55  | 100.00 | 标准模式        |
| Mo | 98  | 24.13  | 标准模式        |
| Nb | 93  | 100.00 | 标准模式        |
| Ni | 60  | 26.22  | 标准模式        |
| Pb | 208 | 100.00 | 标准模式        |
| Sn | 118 | 24.20  | 标准模式        |
| Ta | 181 | 99.98  | 标准模式        |
| Ti | 49  | 5.41   | 标准模式        |
| U  | 238 | 99.27  | 标准模式        |
| V  | 51  | 99.75  | 标准模式        |
| W  | 184 | 30.64  | 标准模式        |

表 1 各待测元素同位素选择

#### 3.4 精密度实验

按照实验方法,对纯铪样品进行精密度实验,连续测定 9 次各杂质元素含量,结果见表 2 (/表示未检出)。同时以纯铪为基体,加入不同量的杂质元素合成模拟样(杂质水平 1、杂质水平 2、杂质水平 3),采用拟定的分析方法进行 9 次测定,计算平均值及回收率,结果见表 3。

表 2 铪精密度试验

| 元素 | 测定值/%                                                                   | 平均值/%   | RSD/% |
|----|-------------------------------------------------------------------------|---------|-------|
| Al | /                                                                       | /       | /     |
| В  | /                                                                       | /       | /     |
| Со | /                                                                       | /       | /     |
| Cr | /                                                                       | /       | /     |
| Cu | /                                                                       | /       | /     |
| Fe | /                                                                       | /       | /     |
| Mg | /                                                                       | /       | /     |
| Mn | /                                                                       | /       | /     |
| Mo | 0.0017、0.0017、0.0016、0.0016、0.0016、0.0017、0.0016、0.0015、0.0016          | 0.0016  | 3.87  |
| Nb | 0.0016、0.0016、0.0016、0.0015、0.0016、0.0015、0.0016、0.0016、0.0015          | 0.0016  | 3.01  |
| Ni | /                                                                       | /       | /     |
| Pb | 0.00074、0.00081、0.00080、0.00075、0.00075、0.00074、0.0072、0.00074、0.00074  | 0.00075 | 3.75  |
| Sn | 0.00012、0.00011、0.00010、0.00012、0.00012、0.00011、0.00012、0.00012、0.00010 | 0.00011 | 7.20  |
| Ta | 0.0032、0.0028、0.0029、0.0028、0.0029、0.0032、0.0030、0.0031、0.0031          | 0.0030  | 4.97  |
| Ti | /                                                                       | /       | /     |
| V  | /                                                                       | /       | /     |
| W  | 0.00026、0.00024、0.00024、0.00024、0.00025、0.00024、0.00025、0.00025、0.00026 | 0.00025 | 3.17  |

表 3 模拟样品精密度试验

| 样品中各元<br>元素 |          | 杂质水平1(加入5μg/g) |       | 杂质水平1 (加入10μg/g) |       | 杂质水平 1 (加入 50μg/g) |       |
|-------------|----------|----------------|-------|------------------|-------|--------------------|-------|
| 儿系          | 素含量 μg/g | 测得值/μg/g       | 回收率/% | 测得值/μg/g         | 回收率/% | 测得值/μg/g           | 回收率/% |
| Al          | 0        | 5.21           | 104.2 | 10.21            | 102.1 | 52.06              | 104.1 |
| В           | 0        | 5.11           | 102.2 | 9.27             | 92.7  | 50.97              | 101.9 |
| Со          | 0        | 4.87           | 97.4  | 9.86             | 98.6  | 49.92              | 99.8  |
| Cr          | 0        | 4.67           | 93.4  | 9.77             | 97.7  | 48.65              | 97.3  |
| Cu          | 0        | 5.02           | 100.4 | 9.65             | 96.5  | 48.79              | 97.6  |
| Fe          | 0        | 5.23           | 104.6 | 10.2             | 102.0 | 49.55              | 99.1  |
| Mg          | 0        | 4.73           | 94.6  | 10.48            | 104.8 | 48.76              | 97.5  |
| Mn          | 0        | 5.39           | 107.8 | 10.39            | 103.9 | 52.3               | 104.6 |
| Mo          | 17.31    | 22.85          | 110.8 | 26.73            | 94.2  | 73.68              | 112.7 |
| Nb          | 16.87    | 21.6           | 94.6  | 26.44            | 95.7  | 68.46              | 103.2 |
| Ni          | 0        | 5.46           | 109.2 | 10.92            | 109.2 | 53.2               | 106.4 |
| Pb          | 7.29     | 12.12          | 96.6  | 16.47            | 91.8  | 59.72              | 104.9 |
| Sn          | 1.2      | 6.53           | 106.6 | 11.64            | 104.4 | 53.66              | 104.9 |
| Ta          | 28.75    | 33.81          | 101.2 | 38.97            | 102.2 | 78.8               | 100.1 |
| Ti          | 0        | 5.05           | 101.0 | 10.16            | 101.6 | 51.11              | 102.2 |
| V           | 0        | 4.66           | 93.2  | 10.37            | 103.7 | 49.87              | 99.7  |
| W           | 2.61     | 7.94           | 106.6 | 12.69            | 100.8 | 53.62              | 102.0 |

## 四、主要实验(或验证)的分析、综述报告

在完成相关条件试验后,各参编单位按照 GB/T 1.1—2009《标准化工作导则第 1 部分:标准的结构和编写》中关于精密度的要求,对 4 个水平铪样品中多种杂质元素的含量进行了平行测定。在汇总数据后,西安汉唐分析检测有限公司按照 GB/T 6379.2—2004《测量方法与结果的准确度》,对五家参编单位的试验验证数据进行统计计算,并结合线性内插或外延法,得出各元素不同含量梯度的重复性限和再现性限。

| 单位             | 杂质水平 1 / % | 杂质水平 2 / % | 杂质水平 3 / % |
|----------------|------------|------------|------------|
| 西安汉唐分析检测有限公司   | 0.0005     | 0.0010     | 0.0050     |
| 国标(北京)检验认证有限公司 | -          | -          | -          |
| 广东省工业分析检测中心    | -          | -          | -          |
| 国核宝钛锆业股份公司     | -          | -          | -          |
| 宝钛集团有限公司       | -          | -          | -          |
| 西部新锆核材料科技有限公司  | -          | -          | -          |
| 长沙矿冶研究院        | -          | -          | -          |

表 4 铪中杂质含量数据结果统计

## 4.1 重复性

在重复性条件下获得的两次独立测试结果的测定值,在表 5 给出的平均值范围内,两个测试结果的绝对差值不超过重复性限(r),超过重复性限(r)情况不超过 5%。重复性限(r) 按表 5 数据采用线性内插法或外延法求得:

表 5 重复性限

| 杂质的质量分数/% | 0.0005 | 0.0010 | 0.0050 |
|-----------|--------|--------|--------|
| 重复性限/%    | -      | -      | -      |

#### 4.2 再现性

在再现性条件下获得的两次独立测试结果的测定值,在表 6 给出的平均值范围内,两个测试结果的绝对差值不超过再现性限 (R),超过再现性限 (R) 情况不超过 5%。再现性限 (R) 按表 6 数据采用线性内插法或外延法求得:

表 6 再现性限

| 杂质的质量分数/% | 0.0005 | 0.0010 | 0.0050 |
|-----------|--------|--------|--------|
| 再现性限/%    | -      | -      | -      |

## 五、 标准水平分析

## 5.1 采用国际标准和国外先进标准的程度

经查, 国外无相同类型的国际标准。

## 5.2 国际、国外同类标准水平的对比分析

经查, 国外无相同类型的国际标准。

## 5.3 与测试的国外样品、样机的有关数据对比情况

无。

## 六、 与现行法律、法规、强制性国家标准及相关标准协调配套情况

本标准与有关的现行法律、法规和强制性国家标准没有冲突。本标准与现行标准及制定中的标准无重复交叉情况。

## 七、标准中的专利及涉及知识产权

本标准起草过程中,没有检索到专利和知识产权问题。

## 八、 重大分歧意见的处理经过和依据

编制组严格按既定编制原则进行编写,本标准起草过程中未发生重大的分歧意见。

## 九、标准作为强制性或推荐性标准的建议

建议该标准为行业标准,供相关组织参考采用。

## 十、 贯彻标准的要求和措施建议

本标准规范了铪中杂质元素的测定,有利用整个行业分析水平的提升。本标准发布执行后,建议标准主管单位积极向生产厂家及国内外用户推广。

## 十一、 废止现行有关标准的建议

本标准为新制定标准, 无废止其它标准的建议。

## 十二、 标准实施的预期作用

本标准充分考虑了我国铪生产企业和使用加工企业的生产工艺技术水平。本标准颁布执行后,有利于生产采用统一的分析方法开展产品质量检验工作,有利于市场公平交易环境的形成,具有较大的社会效益。

#### 十三、 其他应予说明的事项

起草单位变更说明:西安汉唐分析检测有限公司是由西北有色金属研究院和西部金属材料股份有限公司两家企业的分析检测部门联合成立,成立日期为 2018 年 8 月 20 日。我公司成立后,原有两家单位不保留检测业务和人员设备。本标准的制定人员均已划拨到西安汉唐分析检测有限公司。为更好的完成标准起草工作,便于标准的后续推广以及其他使用单位咨询标准相关内容,特将本标准制订工作单位由西北有色金属研究院更改为西安汉唐分析检测有限公司。